
Community Exploration: From Offline Optimization
to Online Learning

Xiaowei Chen1, Weiran Huang2, Wei Chen3, John C.S. Lui1
1The Chinese University of Hong Kong

2Huawei Noah’s Ark Lab, 3Microsoft Research
1{xwchen, cslui}@cse.cuhk.edu.hk, 2huang.inbox@outlook.com

3weic@microsoft.com

Abstract

We introduce the community exploration problem that has many real-world appli-
cations such as online advertising. In the problem, an explorer allocates limited
budget to explore communities so as to maximize the number of members he could
meet. We provide a systematic study of the community exploration problem, from
offline optimization to online learning. For the offline setting where the sizes of
communities are known, we prove that the greedy methods for both of non-adaptive
exploration and adaptive exploration are optimal. For the online setting where the
sizes of communities are not known and need to be learned from the multi-round
explorations, we propose an “upper confidence” like algorithm that achieves the
logarithmic regret bounds. By combining the feedback from different rounds, we
can achieve a constant regret bound.

1 Introduction

In this paper, we introduce the community exploration problem, which is abstracted from many
real-world applications. Consider the following hypothetical scenario. Suppose that John just entered
the university as a freshman. He wants to explore different student communities or study groups at
the university to meet as many new friends as possible. But he only has a limited time to spend on
exploring different communities, so his problem is how to allocate his time and energy to explore
different student communities to maximize the number of people he would meet.

The above hypothetical community exploration scenario can also find similar counterparts in serious
business and social applications. One example is online advertising. In this application, an advertiser
wants to promote his products via placing advertisements on different online websites. The website
would show the advertisements on webpages, and visitors to the websites may click on the advertise-
ments when they view these webpages. The advertiser wants to reach as many unique customers as
possible, but he only has a limited budget to spend. Moreover, website visitors come randomly, so it
is not guaranteed that all visitors to the same website are unique customers. So the advertiser needs
to decide how to spend the budget on each website to reach his customers. Of course, intuitively he
should spend more budget on larger communities, but how much? And what if he does not know the
user size of every website? In this case, each website is a community, consisting of all visitors to this
website, and the problem can be modeled as a community exploration problem. Another example
could be a social worker who wants to reach a large number of people from different communities to
do social studies or improve the social welfare for a large population, while he also needs to face the
budget constraint and uncertainty about the community.

In this paper, we abstract the common features of these applications and define the following
community exploration problem that reflects the common core of the problem. We model the problem
with m disjoint communities C1, . . . , Cm with C = [mi=1Ci, where each community Ci has di

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

ar
X

iv
:1

81
1.

05
13

4v
2

 [c
s.L

G
]

18
 N

ov
 2

01
8

members. Each time when one explores (or visit) a community Ci, he would meet one member of
Ci uniformly at random.1 Given a budget K, the goal of community exploration is to determine the
budget allocation k = (k1, . . . , km) 2 Zm

+ with
Pm

i=1 ki K, such that the total number of distinct
members met is maximized when each community Ci is explored ki times.

We provide a systematic study of the above community exploration problem, from offline optimization
to online learning. First, we consider the offline setting where the community sizes are known. In
this setting, we further study two problem variants — the non-adaptive version and the adaptive
version. The non-adaptive version requires that the complete budget allocation k is decided before
the exploration is started, while the adaptive version allows the algorithm to use the feedback from
the exploration results of the previous steps to determine the exploration target of the next step. In
both cases, we prove that the greedy algorithm provides the optimal solution. While the proof for
the non-adaptive case is simple, the proof that the adaptive greedy policy is optimal is much more
involved and relies on a careful analysis of transitions between system statuses. The proof techniques
may be applicable in the analysis of other related problems.

Second, we consider the online setting where the community sizes are unknown in advance, which
models the uncertainty about the communities in real applications. We apply the multi-armed bandit
(MAB) framework to this task, in which community explorations proceed in multiple rounds, and
in each round we explore communities with a budget of K, use the feedback to learn about the
community size, and adjust the exploration strategy in future rounds. The reward of a round is the
the expected number of unique people met in the round. The goal is to maximize the cumulative
reward from all rounds, or minimizing the regret, which is defined as the difference in cumulative
reward between always using the optimal offline algorithm when knowing the community sizes and
using the online learning algorithm. Similar to the offline case, we also consider the non-adaptive and
adaptive version of exploration within each round. We provide theoretical regret bounds of O(log T)
for both versions, where T is the number of rounds, which is asymptotically tight. Our analysis uses
the special feature of the community exploration problem, which leads to improved coefficients in the
regret bounds compared with a simple application of some existing results on combinatorial MABs.
Moreover, we also discuss the possibility of using the feedback in previous round to turn the problem
into the full information feedback model, which allows us to provide constant regret in this case.

In summary, our contributions include: (a) proposing the study of the community exploration problem
to reflect the core of a number of real-world applications; and (b) a systematic study of the problem
with rigorous theoretical analysis that covers offline non-adaptive, offline adaptive, online non-
adaptive and online adaptive cases, which model the real-world situations of adapting to feedback
and handling uncertainty.

2 Problem Definition

We model the problem with m disjoint communities C1, . . . , Cm with C = [mi=1Ci, where each
community Ci has di members. Each exploration (or visit) of one community Ci returns a member
of Ci uniformly at random, and we have a total budget of K for explorations. Since we can trivially
explore each community once when K m, we assume that K > m.

We consider both the offline setting where the sizes of the communities d1, . . . , dm are known, and
the online setting where the sizes of the communities are unknown. For the offline setting, we further
consider two different problems: (1) non-adaptive exploration and (2) adaptive exploration. For
the non-adaptive exploration, the explorer needs to predetermine the budget allocation k before the
exploration starts, while for the adaptive exploration, she can sequentially select the next community
to explore based on previous observations (the members met in the previous community visits).
Formally, we use pair (i, ⌧) to represent the ⌧ -th exploration of community Ci, called an item. Let
E = [m] ⇥ [K] be the set of all possible items. A realization is a function � : E ! C mapping
every possible item (i, ⌧) to a member in the corresponding community Ci, and �(i, ⌧) represents the
member met in the exploration (i, ⌧). We use � to denote a random realization, and the randomness
comes from the exploration results. From the description above, � follows the distribution such that
�(i, ⌧) 2 Ci is selected uniformly at random from Ci and is independent of all other �(i0, ⌧ 0)’s.

1The model can be extended to meet multiple members per visit, but for simplicity, we consider meeting one
member per visit in this paper.

2

For a budget allocation k = (k1, . . . , km) and a realization �, we define the reward R as the number
of distinct members met, i.e., R(k,�) =

Pm
i=1 |[

ki
⌧=1{�(i, ⌧)}|, where |·| is the cardinality of the set.

The goal of the non-adaptive exploration is to find an optimal budget allocation k⇤ = (k⇤1 , . . . , k
⇤
m)

with given budget K, which maximizes the expected reward taken over all possible realizations, i.e.,

k⇤ 2 argmax
k : kkk1K

E� [R(k,�)] . (1)

For the adaptive exploration, the explorer sequentially picks a community to explore, meets a random
member of the chosen community, then picks the next community, meets another random member
of that community, and so on, until the budget is used up. After each selection, the observations so
far can be represented as a partial realization , a function from the subset of E to C = [mi=1Ci.
Suppose that each community Ci has been explored ki times. Then the partial realization is a
function mapping items in [mi=1{(i, 1), . . . , (i, ki)} (which is also called the domain of , denoted
as dom()) to members in communities. The partial realization records the observation on the
sequence of explored communities and the members met in this sequence. We say that a partial
realization is consistent with realization �, denoted as � ⇠ , if for all item (i, ⌧) in the domain
of , we have (i, ⌧) = �(i, ⌧). The strategy to explore the communities adaptively is encoded
as a policy. The policy, denoted as ⇡, is a function mapping to an item in E , specifying which
community to explore next under the partial realization. Define ⇡K(�) = (k1, . . . , km), where ki

is the times the community Ci is explored via policy ⇡ under realization � with budget K. More
specifically, starting from the partial realization 0 with empty domain, for every current partial
realization s at step s, policy ⇡ determines the next community ⇡(s) to explore, meet the member
�(⇡(s)), such that the new partial realization s+1 is adding the mapping from ⇡(s) to �(⇡(s))
on top of s. This iteration continues until the communities have been explored K times, and
⇡K(�) = (k1, . . . , km) denotes the resulting exploration vector. The goal of the adaptive exploration
is to find an optimal policy ⇡⇤ to maximize the expected adaptive reward, i.e.,

⇡
⇤ 2 argmax

⇡
E� [R(⇡K(�),�)] . (2)

We next consider the online setting of community exploration. The learning process proceeds in
discrete rounds. Initially, the size of communities d = (d1, . . . , dm) is unknown. In each round
t � 1, the learner needs to determine an allocation or a policy (called an “action”) based on the
previous-round observations to explore communities (non-adaptively or adaptively). When an action
is played, the sets of encountered members for every community are observed as the feedback to the
player. A learning algorithm A aims to cumulate as much reward (i.e., number of distinct members)
as possible by selecting actions properly at each round. The performance of a learning algorithm is
measured by the cumulative regret. Let �t be the realization at round t. If we explore the communities
with predetermined budget allocation in each round, the T -round (non-adaptive) regret of a learning
algorithm A is defined as

RegA
µ(T) = E�1,...,�T

"
TX

t=1

R(k⇤
,�t)�R(kA

t ,�t)

#
, (3)

where the budget allocation kA
t is selected by algorithm A in round t. If we explore the communities

adaptively in each round, then the T -round (adaptive) regret of a learning algorithm A is defined as

RegA
µ(T) = E�1,...,�T

"
TX

t=1

R(⇡⇤
K(�t),�t)�R(⇡A,t

K (�t),�t)

#
, (4)

where ⇡A,t is a policy selected by algorithm A in round t. The goal of the learning problem is to
design a learning algorithm A which minimizes the regret defined in (3) and (4).

3 Offline Optimization for Community Exploration

3.1 Non-adaptive Exploration Algorithms

If Ci is explored ki times, each member in Ci is encountered at least once with probability 1� (1�
1/di)ki . Thus we have E�[|{�(i, 1), . . . ,�(i, ki)}|] = di(1� (1� 1/di)ki). Hence E� [R(k,�)]
is a function of only the budget allocation k and the size d = (d1, . . . , dm) of all communities.

3

Algorithm 1 Non-Adaptive community exploration with optimal budget allocation
1: procedure CommunityExplore({µ1, . . . , µm}, K, non-adaptive)
2: For i 2 [m], ki 0 . Line 2-5: budget allocation
3: for s = 1, . . . ,K do
4: i

⇤ a random elements in argmaxi(1� µi)ki . O(logm) via using priority queue
5: ki⇤ ki⇤ + 1
6: For i 2 [m], explore Ci for ki times, and put the uniformly met members in multi-set Si

7: end procedure

Algorithm 2 Adaptive community exploration with greedy policy
1: procedure CommunityExplore({µ1, . . . , µm}, K, adaptive)
2: For i 2 [m], Si ;, ci 0 . Line 2-7: adaptively explore communities with policy ⇡

g

3: for s = 1, . . . ,K do
4: i

⇤ a random elements in argmaxi 1� µici

5: v a random member met when Ci⇤ is explored
6: if v /2 Si⇤ then ci⇤ ci⇤ + 1 . v is not met before
7: Si⇤ Si⇤ [{v}
8: end procedure

Let µi = 1/di, and vector µ = (1/d1, . . . , 1/dm). Henceforth, we treat µ as the parameter of the
problem instance, since it is bounded with µ 2 [0, 1]m. Let rk(µ) = E�[R(k,�)] be the expected
reward for the budget allocation k. Based on the above discussion, we have

rk(µ) =
mX

i=1

di(1� (1� 1/di)
ki) =

mX

i=1

(1� (1� µi)
ki)/µi. (5)

Since ki must be integers, a traditional method like Lagrange Multipliers cannot be applied to solve
the optimization problem defined in Eq. (1). We propose a greedy method consisting of K steps to
compute the feasible k⇤. The greedy method is described in Line 2-5 of Algo. 1.
Theorem 1. The greedy method obtains an optimal budget allocation.

The time complexity of the greedy method is O(K logm), which is not efficient for large K. We
find that starting from the initial allocation ki =

l
(K�m)/ ln(1�µi)Pm

j=1 1/ ln(1�µj)

m
, the greedy method can find the

optimal budget allocation in O(m logm)2. (See Appendix A)

3.2 Adaptive Exploration Algorithms

With a slight abuse of notations, we also define r⇡(µ) = E� [R(⇡K(�),�)], since the expected
reward is the function of the policy ⇡ and the vector µ. Define ci() as the number of distinct
members we met in community Ci under partial realization . Then 1� ci()/di is the probability
that we can meet a new member in the community Ci if we explore community Ci one more time. A
natural approach is to explore community Ci⇤ such that i⇤ 2 argmaxi2[m] 1� ci()/di when we
have partial realization . We call such policy as the greedy policy ⇡g. The adaptive community
exploration with greedy policy is described in Algo. 2. One could show that our reward function is
actually an adaptive submodular function, for which the greedy policy is guaranteed to achieve at
least (1�1/e) of the maximized expected reward [13]. However, the following theorem shows that
for our community exploration problem, our greedy policy is in fact optimal.
Theorem 2. Greedy policy is the optimal policy for our adaptive exploration problem.

Proof sketch. Note that the greedy policy chooses the next community only based on the fraction
of unseen members. It does not care which members are already met. Thus, we define si as the
percentage of members we have not met in a community Ci. We introduce the concept of status,
denoted as s = (s1, . . . , sm). The greedy policy chooses next community based on the current

2We thank Jing Yu from School of Mathematical Sciences at Fudan University for her method to find a good
initial allocation, which leads to a faster greedy method.

4

Algorithm 3 Combinatorial Lower Confidence Bound (CLCB) algorithm
Input budget for each round K, method (non-adaptive or adaptive)

1: For i 2 [m], Ti 0 (number of pairs), Xi 0 (collision counting), µ̂i 0 (empirical mean)
2: for t = 1, 2, 3, . . . do . Line 2-8: online learning

3: For i 2 [m], ⇢i
q

3 ln t
2Ti

(⇢i = 0 if Ti = 0) . confidence radius

4: For i 2 [m],
¯
µi max{0, µ̂i � ⇢i} . lower confidence bound

5: {S1, . . . ,Sm} CommunityExplore({
¯
µ1, . . . ,

¯
µm},K,method) . Si: set of met members

6: For i 2 [m], Ti Ti + b|Si| /2c . update number of (member) pairs we observe
7: For i 2 [m], Xi Xi +

Pb|Si|c/2
x=1 {Si[2x� 1] = Si[2x]} . Si[x]: x-th element in Si

8: For i 2 [m] and |Si| > 1, µ̂i Xi/Ti . update empirical mean

status. In the proof, we further extend the definition of reward with a non-decreasing function f as
R(k,�) = f

⇣Pm
i=1

���
Ski

⌧=1{�(i, ⌧)}
���
⌘

. Note that the reward function corresponding to the original
community exploration problem is simply the identity function f(x) = x. Let F⇡(, t) denote the
expected marginal gain when we further explore communities for t steps with policy ⇡ starting from
a partial realization . We want to prove that for all , t and ⇡, F⇡g (, t) � F⇡(, t), where ⇡g is
the greedy policy and ⇡ is an arbitrary policy. If so, we simply take = ;, and F⇡g (;, t) � F⇡(;, t)
for every ⇡ and t exactly shows that ⇡g is optimal. We prove the above result by an induction on t.

Let Ci be the community chosen by ⇡ based on the partial realization . Define c() =
P

i ci()
and � ,f = f(c() + 1)� f(c()). We first claim that F⇡g (, 1) � F⇡(, 1) holds for all and ⇡
with the fact that F⇡(, 1) = (1� µici())� ,f . Note that the greedy policy ⇡g chooses Ci⇤ with
i
⇤ 2 argmaxi(1� µici()). Hence, F⇡g (, 1) � F⇡(, 1).

Next we prove that F⇡g (, t+1) � F⇡(, t+1) based on the assumption that F⇡g (, t0) � F⇡(, t0)
holds for all , ⇡, and t

0 t. An important observation is that F⇡g (, t) has equal value for any
partial realization associated with the same status s since the status is enough for the greedy
policy to determine the choice of next community. Formally, we define Fg(s, t) = F⇡g (, t) for
any partial realization that satisfies s = (1 � c1()/d1, . . . , 1 � cm()/dm). Let Ci⇤ denote the
community chosen by policy ⇡g under realization , i.e., i⇤ 2 argmaxi2[m] 1� µici(). Let Ii be
the m-dimensional unit vector with one in the i-th entry and zeros in all other entries. We show that

F⇡(, t+ 1) ci() · µiFg(s, t) + (di � ci()) · µiFg(s� µiIi, t) + (1� µici())� ,f

 µi⇤ci⇤()Fg(s, t) + (1� µi⇤ci⇤())Fg(s� µi⇤Ii⇤ , t) + (1� µi⇤ci⇤())� ,f

= Fg(s, t+ 1) = F⇡g (, t+ 1).

The first line is derived directly from the definition and the assumption. The key is to prove the
correctness of Line 2 in above inequality. It indicates that if we choose a sub-optimal community
at first, and then we switch back to the greedy policy, the expected reward would be smaller. The
proof is nontrivial and relies on a careful analysis based on the stochastic transitions among status
vectors. Note that the reward function r⇡(µ) is not necessary adaptive submodular if we extend the
reward with the non-decreasing function f . Hence, a (1� 1/e) guarantee for adaptive submodular
function [13] is not applicable in this scenario. Our analysis scheme can be applied to any adaptive
problems with similar structures.

4 Online Learning for Community Exploration

The key of the learning algorithm is to estimate the community sizes. The size estimation problem
is defined as inferring unknown set size di from random samples obtained via uniformly sampling
with replacement from the set Ci. Various estimators have been proposed [3, 8, 10, 16] for the
estimation of di. The core idea of estimators in [3, 16] are based on “collision counting”. Let (u, v)
be an unordered pair of two random elements from Ci and Yu,v be a pair collision random variable
that takes value 1 if u = v (i.e., (u, v) is a collision) and 0 otherwise. It is easy to verify that
E[Yu,v] = 1/di = µi. Suppose we independently take Ti pairs of elements from Ci and Xi of them
are collisions. Then E[Xi/Ti] = 1/di = µi. The size di can be estimated by Ti/Xi (the estimator is
valid when Xi > 0).

5

We present our CLCB algorithm in Algorithm 3. In the algorithm, we maintain an unbiased estimation
of µi instead of di for each community Ci for the following reasons. Firstly, Ti/Xi is not an unbiased
estimator of di since E[Ti/Xi] � di according to the Jensen’s inequality. Secondly, the upper
confidence bound of Ti/Xi depends on di, which is unknown in our online learning problem. Thirdly,
we need at least (1+

p
8di ln 1/� + 1)/2 uniformly sampled elements in Ci to make sure that Xi > 0

with probability at least 1 � �. We feed the lower confidence bound
¯
µi to the exploration process

since our reward function increases as µi decreases. The idea is similar to CUCB algorithm [7].
The lower confidence bound is small if community Ci is not explored often (Ti is small). Small

¯
µi

motivates us to explore Ci more times. The feedbacks after the exploration process at each round
are the sets of encountered members S1, . . . ,Sm in communities C1, . . . , Cm respectively. Note that
for each i 2 [m], all pairs of elements in Si, namely {(x, y) | x y, x 2 Si, y 2 Si\{x}} are not
mutually independent. Thus, we only use b|Si| /2c independent pairs. Therefore, Ti is updated as
Ti + b|Si| /2c at each round. In each round, the community exploration could either be non-adaptive
or adaptive, and the following regret analysis separately discuss these two cases.

4.1 Regret Analysis for the Non-adaptive Version

The non-adaptive bandit learning model fits into the general combinatorial multi-armed bandit
(CMAB) framework of [7, 20] that deals with nonlinear reward functions. In particular, we can treat
the pair collision variable in each community Ci as a base arm, and our expected reward in Eq. (5) is
non-linear, and it satisfies the monotonicity and bounded smoothness properties (See Properties 1
and 2). However, directly applying the regret result from [7, 20] will give us an inferior regret bound
for two reasons. First, in our setting, in each round we could have multiple sample feedback for
each community, meaning that each base arm could be observed multiple times, which is not directly
covered by CMAB. Second, to use the regret result in [7, 20], the bounded smoothness property
needs to have a bounded smoothness constant independent of the actions, but we can have a better
result by using a tighter form of bounded smoothness with action-related coefficients. Therefore, in
this section, we provide a better regret result by adapting the regret analysis in [20].

We define the gap �k = rk⇤(µ) � rk(µ) for all action k satisfying
Pm

i=1 ki = K. For each
community Ci, we define �i

min = min�k>0,ki>1 �k and �i
max = max�k>0,ki>1 �k. As a

convention, if there is no action k with ki > 1 such that �k > 0, we define �i
min = 1 and

�i
max = 0. Furthermore, define �min = mini2[m] �

i
min and �max = maxi2[m] �

i
max. Let

K
0 = K �m+ 1. We have the regret for Algo. 3 as follows.

Theorem 3. Algo. 3 with non-adaptive exploration method has regret as follows.

Regµ(T)
mX

i=1

48
�K0

2

�
K lnT

�i
min

+ 2

✓
K

0

2

◆
m+

j
K0

2

k
⇡
2

3
m�max = O

mX

i=1

K
03 log T

�i
min

!
. (6)

The proof of the above theorem is an adaption of the proof of Theorem 4 in [20], and the full proof
details as well as the detailed comparison with the original CMAB framework result are included in
the supplementary materials. We briefly explain our adaption that leads to the regret improvement.
We rely on the following monotonicity and 1-norm bounded smoothness properties of our expected
reward function rk(µ), similar to the ones in [7, 20].
Property 1 (Monotonicity). The reward function rk(µ) is monotonically decreasing, i.e., for any two
vectors µ = (µ1, . . . , µm) and µ0 = (µ0

1, . . . , µ
0
m), we have rk(µ) � rk(µ0) if µi µ

0
i 8i 2 [m].

Property 2 (1-Norm Bounded Smoothness). The reward function rk(µ) satisfies the 1-norm bounded
smoothness property, i.e., for any two vectors µ = (µ1, · · · , µm) and µ0 = (µ0

1, · · · , µ0
m), we have

|rk(µ)� rk(µ0)|
Pm

i=1

�ki

2

�
|µi � µ

0
i|

�K0

2

�Pm
i=1 |µi � µ

0
i|.

We remark that if we directly apply the CMAB regret bound of Theorem 4 in [20], we need to revise
the update procedure in Lines 6-8 of Algo. 3 so that each round we only update one observation for
each community Ci if |Si| > 1. Then we would obtain a regret bound O

⇣P
i
K04m log T

�i
min

⌘
, which

means that our regret bound in Eq. (6) has an improvement of O(K 0
m). This improvement is exactly

due to the reason we give earlier, as we now explain with more details.

For all the random variables introduced in Algo. 3, we add the subscript t to denote their value at the
end of round t. For example, Ti,t is the value of Ti at the end of round t. First, the improvement of

6

the factor m comes from the use of a tighter bounded smoothness in Property 2, namely, we use the
bound

Pm
i=1

�ki

2

�
|µi�µ0

i| instead of
�K0

2

�Pm
i=1 |µi�µ0

i|. The CMAB framework in [20] requires the
bounded smoothness constant to be independent of actions. So to apply Theorem 4 in [20], we have
to use the bound

�K0

2

�Pm
i=1 |µi � µ

0
i|. However, in our case, when using bound

Pm
i=1

�ki

2

�
|µi � µ

0
i|,

we are able to utilize the fact
Pm

i=1

�ki

2

�

�K0

2

�
to improve the result by a factor of m. Second, the

improvement of the O(K 0) factor, more precisely a factor of (K 0 � 1)/2, is achieved by utilizing
multiple feedback in a single round and a more careful analysis of the regret utilizing the property
of the right Riemann summation. Specifically, let �kt = rk⇤(µ) � rkt(µ) be the reward gap.
When the estimate is within the confidence radius, we have �kt

Pm
i=1

c(ki,t�1)
2 /

p
Ti,t�1

c
Pm

i=1bki,t/2c/
p
Ti,t�1, where c is a constant. In Algo. 3, we have Ti,t = Ti,t�1 + bki,t/2c

because we allow multiple feedback in a single round. Then
P

t�1,Ti,tLi(T)bki,t/2c/
p

Ti,t�1

is the form of a right Riemann summation, which achieves the maximum value when ki,t = K
0.

Here Li(T) is a lnT function with some constants related with community Ci. Hence the regret
bound

PT
t=1 �kt c

Pm
i=1

P
t�1,Ti,tLi(T)b

ki,t

2 c/
p

Ti,t�1 2c
Pm

i=1

p
Li(T). However, if we

use the original CMAB framework, we need to set Ti,t = Ti,t�1 + {ki,t > 1}. In this case,
we can only bound the regret as

PT
t=1 �kt = c

Pm
i=1

P
t�1,Ti,tLi(T)(ki,t � 1)/2

p
Ti,t�1

2cK
0�1
2

Pm
i=1

p
Li(T), leading to an extra factor of (K 0 � 1)/2.

Justification for Algo. 3. In Algo. 3, we only use the members in current round to update the estima-
tor. This is practical for the situation where the member identifiers are changing in different rounds
for privacy protection. Privacy gains much attention these days. Consider the online advertising
scenario we explain in the introduction. Whenever a user clicks an advertisement, the advertiser
would store the user information (e.g. Facebook ID, IP address etc.) to identify the user and correlated
with past visits of the user. If such user identifiers are fixed and do not change, the advertiser could
easily track user behavior, which may result in privacy leak. A reasonable protection for users is to
periodically change user IDs (e.g. Facebook can periodically change user hash IDs, or users adopt
dynamic IP addresses, etc.), so that it is difficult for the advertiser to track the same user over a long
period of time. Under such situation, it may be likely that our learning algorithm can still detect ID
collisions within the short period of each learning round, but cross different rounds, collisions may
not be detectable due to ID changes.

Full information feedback. Now we consider the scenario where the member identifiers are fixed
over all rounds, and design an algorithm with a constant regret bound. Our idea is to ensure that
we can observe at least one pair of members in every community Ci in each round t. We call such
guarantee as full information feedback. If we only use members revealed in current round, we cannot
achieve this goal since we have no observation of new pairs for a community Ci when ki = 1. To
achieve full information feedback, we use at least one sample from the previous round to form a
pair with a sample in the current round to generate a valid pair collision observation. In particular,
we revise the Line 3, 6, and 7 as follows. Here we use u0 to represent the last member in Si in the
previous round (let u0 = null when t = 1) and ux(x > 0) to represent the x-th members in Si in the
current round. The revision of Line 3 implies that we use the empirical mean µ̂i = Xi/Ti instead of
the lower confidence bound in the function CommunityExplore.

Line 3: For i 2 [m], ⇢i = 0; Line 6: For i 2 [m], Ti Ti + |Si|� {t = 1},

Line 7: For i 2 [m], Xi Xi +
X|Si|�1

x=0
{ux = ux+1}.

(7)

Theorem 4. With the full information feedback revision in Eq. (7), Algo. 3 with non-adaptive
exploration method has a constant regret bound. Specifically,

Regµ(T)
�
2 + 2me

2
K

02(K 0 � 1)2/�2
min

�
�max.

Note that we cannot apply the Hoeffding bound in [14] directly since the random variables {ux =
ux+1} we obtain during the online learning process are not mutually independent. Instead, we apply
a concentration bound in [9] that is applicable to variables that have local dependence relationship.

7

4.2 Regret Analysis for the Adaptive Version

For the adaptive version, we feed the lower confidence bound
¯
µt into the adaptive community

exploration procedure, namely CommunityExplore({
¯
µ1, . . . ,

¯
µm},K, adaptive) in round t. We

denote the policy implemented by this procedure as ⇡t. Note that both ⇡g and ⇡t are based on
the greedy procedure CommunityExplore(·,K, adaptive). The difference is that ⇡g uses the true
parameter µ while ⇡t uses the lower bound parameter

¯
µt. More specifically, given a partial realization

 , the community chosen by ⇡t is Ci⇤ where i
⇤ 2 argmaxi2[m] 1� ci()

¯
µi,t. Recall that ci() is

the number of distinct encountered members in community Ci under partial realization .

Similar to ⇡g , the policy ⇡t also chooses next community to explore based on current status. Let s =
(s1, . . . , sm) = (1�c1()µ1, . . . , 1�cm()µm) be the corresponding status to the partial realization
 . Here si is the percentage of unmet members in the community Ci. For any partial realization
having status s, the policy ⇡t choose Ci⇤ to explore, where i

⇤ 2 argmaxi2[m](
¯
µi,t/µi)si + (µi �

¯
µi)/µi. When

¯
µi,t µi, we have (

¯
µi,t/µi)si +(µi�

¯
µi)/µi � si, which means that the percentage

of unmet members in Ci is overestimated by ⇡t.

We first properly define the metrics �i,k
min and �(k)

max used in the regret bound as follows. Consider
a specific full realization � where {�(i, 1), . . . ,�(i, di)} are di distinct members in Ci for i 2
[m]. The realization � indicates that we will obtain a new member in the first di exploration of
community Ci. Let Ui,k denote the number of times community Ci is selected by policy ⇡g in
the first k � 1(k > m) steps under the special full realization � we define previously. We define
�i,k

min = (µiUi,k�minj2[m] µjUj,k)/Ui,k. Conceptually, the value µiUi,k�minj2[m] µjUj,k is gap
in the expected reward of the next step between selecting a community by ⇡g (the optimal policy)
and selecting community Ci, when we already meet Uj,k distinct members in Cj for j 2 [m]. When
µiUi,k = minj2[m] µjUj,k, we define �i,k

min = 1. Let ⇡ be another policy that chooses the same
sequence of communities as ⇡g when the number of met members in Ci is no more than Ui,k for all
i 2 [m]. Note that policy ⇡ chooses the same communities as ⇡g in the first k � 1 steps under the
special full realization �. Actually, the policy ⇡ is the same as ⇡g for at least k � 1 steps. We use ⇧k

to denote the set of all such policies. We define �(k)
max as the maximum reward gap between the policy

⇡ 2 ⇧k and the optimal policy ⇡g , i.e., �(k)
max = max⇡2⇧k r⇡g (µ)� r⇡(µ). Let D =

Pm
i=1 di.

Theorem 5. Algo. 3 with adaptive exploration method has regret as follows.

Regµ(T)

0

@
mX

i=1

min{K,D}X

k=m+1

6�(k)
max

(�i,k
min)

2

1

A lnT +
bK

0

2 c⇡
2

3

mX

i=1

min{K,D}X

k=m+1

�(k)
max. (8)

Theorem 6. With the full information feedback revision in Eq. (7), Algo. 3 with adaptive exploration
method has a constant regret bound. Specifically,

Regµ(T)
Xm

i=1

Xmin{K,D}

k=m+1

�
2/"4i,k + 1

�
�(k)

max.

where "i,k is defined as (here i
⇤
k 2 argmini2[m] µiUi,k)

"i,k , (µiUi,k � µi⇤k
Ui⇤k,k

)/(Ui,k + Ui⇤k,k
) for i 6= i

⇤
k and "i,k =1 for i = i

⇤
k.

Gabillon et al. [11] analyzes a general adaptive submodular function maximization in bandit setting.
We have a regret bound in similar form as (8) if we directly apply Theorem 1 in [11]. However, their
version of �(k)

max is an upper bound on the expected reward of policy ⇡g from k steps forward, which
is larger than our �(k)

max. Their version of �i,k
min is the minimum (µici()�minj2[m] µjcj())/ci()

for all partial realization obtained after policy ⇡g is executed for k steps, which is smaller than
our �i,k

min. Our regret analysis is based on counting how many times ⇡g and ⇡t choose different
communities under the special full realization �, while the analysis in [11] is based on counting how
many times ⇡g and ⇡t choose different communities under all possible full realizations.

Discussion. In this paper, we consider the online learning problem that consists of T rounds, and
during each round, we explore the communities with a budget K. Our goal is to maximize the
cumulative reward in T rounds. Another important and natural setting is described as follows. We

8

start to explore communities with unknown sizes, and update the parameters every time we explore
the community for one step (or for a few steps). Different from the setting defined in this paper, here
a member will not contribute to the reward if it has been met in previous rounds. To differentiate
the two settings, let’s call the latter one the “interactive community exploration”, while the former
one the “repeated community exploration”. Both the repeated community exploration defined in this
paper and the interactive community exploration we will study as the future work have corresponding
applications. The former is suitable for online advertising where in each round the advertiser promotes
different products. Hence the rewards in different rounds are additive. The latter corresponds to
the adaptive online advertising for the same product, and thus the rewards in different rounds are
dependent.

5 Related Work

Golovin and Krause [13] show that a greedy policy could achieve at least (1� 1/e) approximation
for the adaptive submodular function. The result could be applied to our offline adaptive problem, but
by an independent analysis we show the better result that the greedy policy is optimal. Multi-armed
bandit (MAB) problem is initiated by Robbins [18] and extensively studied in [2, 4, 19]. Our online
learning algorithm is based on the extensively studied Upper Confidence Bound approach [1]. The
non-adaptive community exploration problem in the online setting fits into the general combinatorial
multi-armed bandit (CMAB) framework [6, 7, 12, 17, 20], where the reward is a set function of base
arms. The CMAB problem is first studied in [12], and its regret bound is improved by [7, 17]. We
leverage the analysis framework in [7, 20] and prove a tighter bound for our algorithm. Gabillon et al.
[11] define an adaptive submodular maximization problem in bandit setting. Our online adaptive
exploration problem is a instance of the problem defined in [11]. We prove a tighter bound than the
one in [11] by using the properties of our problem.

Our model bears similarities to the optimal discovery problem proposed in [5] such as we both have
disjoint assumption, and both try to maximize the number of target elements. However, there are also
some differences: (a) We use different estimators for our critical parameters, because our problem
setting is different. (b) Their online model is closer to the interactive community exploration we
explained in 4.2 , while our online model is on repeated community exploration. As explained in 4.2,
the two online models serve different applications and have different algorithms and analyses. (c) We
also have more comprehensive studies on the offline cases.

6 Future Work

In this paper, we systematically study the community exploration problems. In the offline setting,
we propose the greedy methods for both of non-adaptive and adaptive exploration problems. The
optimality of the greedy methods are rigorously proved. We also analyze the online setting where the
community sizes are unknown initially. We provide a CLCB algorithm for the online community
exploration. The algorithm has O(log T) regret bound. If we further allow the full information
feedback, the CLCB algorithm with some minor revisions has a constant regret.

Our study opens up a number of possible future directions. For example, we can consider various
extensions to the problem model, such as more complicated distributions of member meeting prob-
abilities, overlapping communities, or even graph structures between communities. We could also
study the gap between non-adaptive and adaptive solutions.

Acknowledgments

We thank Jing Yu from School of Mathematical Sciences at Fudan University for her insightful
discussion on the offline problems, especially, we thank Jing Yu for her method to find a good initial
allocation, which leads to a faster greedy method. Wei Chen is partially supported by the National
Natural Science Foundation of China (Grant No. 61433014). The work of John C.S. Lui is supported
in part by the GRF Grant 14208816.

9

References
[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed

bandit problem. Machine learning, 47(2-3):235–256, 2002.

[2] Donald A Berry and Bert Fristedt. Bandit problems: sequential allocation of experiments.
Chapman and Hall, 5:71–87, 1985.

[3] Marco Bressan, Enoch Peserico, and Luca Pretto. Simple set cardinality estimation through
random sampling. arXiv preprint arXiv:1512.07901, 2015.

[4] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends R� in Machine Learning, 5(1):1–122,
2012.

[5] Sébastien Bubeck, Damien Ernst, and Aurélien Garivier. Optimal discovery with probabilistic
expert advice: finite time analysis and macroscopic optimality. JMLR, 14(Feb):601–623, 2013.

[6] Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. Combinatorial multi-armed bandit
with general reward functions. In NIPS, pages 1659–1667, 2016.

[7] Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. Combinatorial multi-armed bandit and
its extension to probabilistically triggered arms. Journal of Machine Learning Research, 17
(50):1–33, 2016. A preliminary version appeared as Chen, Wang, and Yuan, “Combinatorial
multi-armed bandit: General framework, results and applications”, ICML’2013.

[8] Mary C Christman and Tapan K Nayak. Sequential unbiased estimation of the number of classes
in a population. Statistica Sinica, pages 335–352, 1994.

[9] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, 1st edition, 2009.

[10] Mark Finkelstein, Howard G. Tucker, and Jerry Alan Veeh. Confidence intervals for the number
of unseen types. Statistics & Probability Letters, pages 423 – 430, 1998.

[11] Victor Gabillon, Branislav Kveton, Zheng Wen, Brian Eriksson, and S Muthukrishnan. Adaptive
submodular maximization in bandit setting. In NIPS, pages 2697–2705, 2013.

[12] Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. Combinatorial network optimization with
unknown variables: Multi-armed bandits with linear rewards and individual observations.
IEEE/ACM Trans. Netw., 20(5):1466–1478, 2012.

[13] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in
active learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:
427–486, 2011.

[14] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American statistical association, 58(301):13–30, 1963.

[15] Svante Janson. Large deviations for sums of partly dependent random variables. Random
Structures & Algorithms, 24(3):234–248, 2004.

[16] Liran Katzir, Edo Liberty, and Oren Somekh. Estimating sizes of social networks via biased
sampling. In WWW, 2011.

[17] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret bounds for
stochastic combinatorial semi-bandits. In Artificial Intelligence and Statistics, pages 535–543,
2015.

[18] Herbert Robbins. Some aspects of the sequential design of experiments. In Herbert Robbins
Selected Papers, pages 169–177. Springer, 1985.

[19] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[20] Qinshi Wang and Wei Chen. Improving regret bounds for combinatorial semi-bandits with
probabilistically triggered arms and its applications. In NIPS, pages 1161–1171, 2017.

10

Supplementary Materials

A Improved Budget Allocation Algorithm

Theorem 1. The greedy method obtains an optimal budget allocation.

Proof. Let ri(j) = E�[|{�(i, 1), . . . ,�(i, j)}|] = di(1� (1� 1/di)j) denote the expected reward
when the community i is explored j times. Then we have that the marginal gain ri(j + 1)� ri(j) =
(1 � µi)j . Define a matrix X 2 Rm⇥K , where the (i, j)-th entry Xi,j is (1 � µi)j�1. When the
budget allocation is k = (k1, . . . , km), the expected reward rk(µ) can be written as the sum of
elements in X , i.e., rk(µ) =

Pm
i=1

Pki

j=1 Xi,j . A key property of X is that the value in each row is
decreasing with respect to the column index j. Hence, for every s � 1, the s-th step of the greedy
method chooses the s-th largest value in X . At step s = K, the greedy method finds the largest
K values in matrix X . We can conclude that the greedy method obtains a budget allocation that
maximizes the reward rk(µ). ⌅

We propose a budget allocation algorithm which has time complexity O(m logm) in Algo. 4. The
basic idea is to find a good initial allocation that is not far from the optimal allocation. Then starting
from the initial allocation, we run our original greedy method.

Algorithm 4 Budget allocation algorithm
Input parameters µ, budget K > m

1: For i 2 [m], ki = d((K �m)/ ln(1� µi))/(
Pm

j=1 1/ ln(1� µj))e . A good initial allocation
2: while

Pm
i=1 ki < k do

3: i
⇤ argmaxi(1� µi)ki . O(logm) via using priority queue

4: ki⇤ ki⇤ + 1

Lemma 1 (Basic property of optimal allocation). Let k⇤ be the optimal budget allocation when the
parameter of the community is µ. For i, j 2 [m] , we have

(1� µi)
(k⇤

i �1) � (1� µj)
k⇤
j .

Proof. We define budget allocation k0 which is the same as k⇤ except that k0i = k
⇤
i � 1 and

k
0
j = k

⇤
j + 1. If (1� µi)(k

⇤
i �1)

< (1� µj)
k⇤
j and i 6= j, then we have

rk0(µ) = rk⇤(µ)� (1� µi)
(k⇤

i �1) + (1� µj)
k⇤
j > rk⇤(µ),

which is contradict with the fact that k⇤ is the optimal solution. This proves the lemma. ⌅
Lemma 2 (Allocation lower bound). Let k⇤ be the optimal budget allocation when the parameter of
the communities is µ. Define k� = (k�1 , . . . , k

�
m) where

k
�
i =

(K �m)/ ln(1� µi)Pm
j=1 1/ ln(1� µj)

.

We have k
⇤
i � k

�
i .

Proof. According to the definition of k�, we have k�i ln(1� µi) = k
�
j ln(1� µj) for i, j 2 [m]. If

we can find i such that k�i + 1 k
⇤
i , then

(1� µj)
k�
j = (1� µi)

k�
i � (1� µi)

k⇤
i �1 � (1� µj)

k⇤
j .

Hence k�j k
⇤
j . On the other hand, we can always find k

�
i +1 k

⇤
i since

Pm
i=1(k

�
i +1) = K. ⌅

In Algo. 4, we start with the lower bound k� of the optimal allocation. Since
Pm

i=1 k
�
i = K �m,

we have
Pm

i=1

��dk�i e � k
⇤
i

��
Pm

i=1

��k�i � k
⇤
i

�� = m, which indicates Algo. 4 obtains the optimal
budget allocation within m steps. We also provide an upper bound k+ in the following. The upper
bound is also close to the optimal budget since

Pm
i=1

��bk+i c � k
⇤
i

��
Pm

i=1

��k+i � k
⇤
i

�� = m.

11

Lemma 3 (Allocation upper bound). Let k⇤ be the optimal budget allocation when the parameter of
the communities is µ. Define k+ = (k+1 , . . . , k

+
m) where

k
+
i =

K/ ln(1� µi)Pm
j=1 1/ ln(1� µj)

+ 1.

We have k
⇤
i k

+
i .

Proof. According to the definition of k+, we have (k+i � 1) ln(1� µi) = (k+j � 1) ln(1� µj) for
i, j 2 [m]. If we can find i such that k+i � 1 � k

⇤
i , then

(1� µj)
k+
j �1 = (1� µi)

k+
i �1 (1� µi)

k⇤
i (1� µj)

k⇤
j�1

.

Hence k+j � k
⇤
j . On the other hand, we can always find k

+
i �1 � k

⇤
i since

Pm
i=1(k

+
i �1) = K. ⌅

B Properties of Greedy Policy

In the following, we show some important properties of the greedy policy. We further extend the
definition of reward with a non-decreasing function f as R(k,�) = f

⇣Pm
i=1

���
Ski

⌧=1{�(i, ⌧)}
���
⌘

.

B.1 Optimality of greedy policy

In this part, we prove that the greedy policy is the optimal policy for our adaptive community
exploration problem. To prove the optimality, we first rewrite the proof sketch of Theorem 2, and
then provide the supporting Lemma 4&5.
Theorem 2. Greedy policy is the optimal policy for our adaptive exploration problem.

Proof. Let F⇡(, t) denote the expected marginal gain when we further explore communities
for t steps with policy ⇡ starting from a partial realization . We want to prove that for all ,
t and ⇡, F⇡g (, t) � F⇡(, t), where ⇡g is the greedy policy and ⇡ is an arbitrary policy. If
so, we simply take = ;, and F⇡g (;, t) � F⇡(;, t) for every ⇡ and t exactly shows that ⇡g

is optimal. We prove the above result by an induction on t. Recall that ci() is the number of
distinct members met in community Ci under the partial realization . Define c() =

P
i ci() and

� ,f = f(c() + 1)� f(c()).

For all and ⇡, we first claim that F⇡g (, 1) � F⇡(, 1) holds. Suppose that policy ⇡ chooses
community Ci to explore based on the partial realization . Since the exploration will return a new
member with probability 1�µici(), the expected marginal gain F⇡(, 1) is (1�µici())[f(c()+
1) � f(c())]. Note that the greedy policy ⇡

g chooses community Ci⇤ to explore with i
⇤ 2

argmaxj(1� µjcj()), and � ,f does not depend on the policy. Hence, F⇡g (, 1) � F⇡(, 1).

Assume F⇡g (, t0) � F⇡(, t0) holds for all , ⇡, and t
0 t. Our goal is to prove that F⇡g (, t+

1) � F⇡(, t + 1). Suppose that in the first step after , policy ⇡ chooses Ci to explore based on
partial realization , and let ⇡() = (i, ⌧). Define E as the event that the member �(i, ⌧) is not met
in partial realization , for � ⇠ . In the following, we represent partial realization equivalently as
a relation {((i, ⌧), (i, ⌧)) | (i, ⌧) 2 dom()}, so we could use [{((i, ⌧),�(i, ⌧))} to represent
the new partial realization extended from by one step with (i, ⌧) added to the domain and �(i, ⌧)
as the member met for this exploration of Ci. Then we have

F⇡(, t+ 1) =
X

v2Ci

Pr (�(i, ⌧) = v)E�[F⇡(, t+ 1) | � ⇠ ,�(i, ⌧) = v]

=
X

v2Ci

µiE�[F⇡([{((i, ⌧),�(i, ⌧))}, t) + f(c() + {E })� f(c()) | � ⇠ ,�(i, ⌧) = v]

X

v2Ci

µiE�[F⇡g ([{((i, ⌧),�(i, ⌧))}, t) | � ⇠ ,�(i, ⌧) = v] + (1� µici())� ,f .

The 2nd line above is derived directly from the definition of F⇡(, t). The 3rd line is based on the
induction hypothesis that F⇡(0

, t) F⇡g (0
, t) holds for all 0. An important observation is that

F⇡g (, t) has equal value for any partial realization associated with the same status s since the

12

status is enough for the greedy policy to determine the choice of next community. Formally, we define
Fg(s, t) = F⇡g (, t) for any partial realization that satisfies s = (1�c1()/d1, . . . , 1�cm()/dm).
Let Ci⇤ denote the community chosen by policy ⇡g under realization , i.e., i⇤ 2 argmaxi2[m] 1�
ci()µi. Let Ii be the m-dimensional unit vector with 1 in the i-th entry and 0 in all other entries.
Therefore,

F⇡(, t+ 1) ci() · µiFg(s, t) + (di � ci()) · µiFg(s� µiIi, t) + (1� µici())� ,f

 µi⇤ci⇤()Fg(s, t) + (1� µi⇤ci⇤())Fg(s� µi⇤Ii⇤ , t) + (1� µi⇤ci⇤())� ,f

(Lemma 5)
= Fg(s, t+ 1) = F⇡g (, t+ 1). (Lemma 4)

The key is to prove the correctness of Line 2 in above equation. It indicates that if we choose a
sub-optimal community at first, and then we switch back to the greedy policy, the expected reward
would be smaller. The proof is nontrivial and relies on a careful analysis based on the stochastic
transitions among status vectors. The above result completes the induction step for t+ 1. Thus the
theorem holds. ⌅

Lemma 4. Let s = (s1, . . . , sm) be a status where each entry si 2 [0, 1]. We have

Fg(s, t+ 1) = (1� si⇤)Fg(s, t) + si⇤Fg(s� µi⇤Ii⇤ , t) + si⇤(f(c() + 1)� f(c())),

where i
⇤ = argmaxi2[m] si. Here is any partial realization corresponding to status s.

Proof. For any partial realization associated with status s, ⇡g would choose community i
⇤. With

probability µi⇤ci⇤() = 1� si⇤ , we will obtain a member that is already met. If so, the communities
stay at the same status. Hence, with probability 1� si⇤ , the expected extra reward is Fg(s, t) after
the first step exploration. With probability 1� µi⇤ci⇤() = si⇤ , we will obtain an unseen member
in Ci⇤ . The communities will transit to next status s� µi⇤Ii⇤ . Therefore, with probability si⇤ , the
expected extra reward is Fg(s� Ii⇤ , t) + f(c() + 1)f(c()) after the first step exploration. ⌅

Lemma 5. Let s = (s1, . . . , sm) be a status where each entry si 2 [0, 1] and be any partial
realization corresponding to s. We have

(1� si)Fg(s, t) + siFg(s� µiIi, t) + si�c

 (1� si⇤)Fg(s, t) + si⇤Fg(s� µi⇤Ii⇤ , t) + si⇤�c,
(9)

where i
⇤ 2 argmaxi2[m] si, si < si⇤ and �c = f(c() + 1)� f(c()).

Proof. Let A(s, i, t) denote the first line of Eq. (9), i.e.,

A(s, i, t) = (1� si)Fg(s, t) + siFg(s� µiIi, t) + si�c.

Note that A(s, i, t) is the expected reward of the following adaptive process.

1. At the first step, choose an arbitrary community Ci (different from Ci⇤) to explore.

2. From the second step to the (t+ 1)-th step, explore communities with the greedy policy ⇡g .

Similarly, A(s, i⇤, t) is the expected reward of the t+ 1 step community exploration via the greedy
policy, i.e., A(s, i⇤, t) = Fg(s, t+ 1). Eq. (9) can be written as A(s, i, t) Fg(s, t+ 1). We prove
this inequality by induction. When t = 0, we have A(s, i, t) = si�c, and A(s, i⇤, t) = si⇤�c.
Hence, A(s, i, t) A(s, i⇤, t) = Fg(s, t+1) when t = 0. Assume A(s, i, t0) Fg(s, t0 +1) holds
for any 0 t

0 t, and any status s. Our goal is to prove that A(s, i, t + 1) A(s, i⇤, t + 1) =
Fg(s, t+ 2). We expand A(s, i, t+ 1) as follows.

A(s, i, t+ 1) = (1� si)Fg(s, t+ 1) + siFg(s� µiIi, t+ 1) + si�c

= (1� si) ((1� si⇤)Fg(s, t) + si⇤Fg(s� µi⇤Ii⇤ , t) + si⇤�c)

+ si((1� si⇤)Fg(s� µiIi, t) + si⇤Fg(s� µiIi � µi⇤Ii⇤ , t) + si⇤�c+1)

+ si�c.

13

Here �c+1 = f(c() + 2) � f(c() + 1). Above expansion of A(i, t + 1) is based on Lemma 4.
We expand A(s, i⇤, t+ 1) as follows.

A(s, i⇤, t+ 1) = (1� si⇤)Fg(s, t+ 1) + si⇤Fg(s� µi⇤Ii⇤ , t+ 1) + si⇤�c

� (1� si⇤) ((1� si)Fg(s, t) + siFg(s� µiIi, t) + si�c)
(assumption A(s, i, t) Fg(s, t+ 1))

+ si⇤((1� si)Fg(s� µi⇤Ii⇤ , t) + siFg(s� µi⇤Ii⇤ � µiIi, t) + si�c+1)
(assumption A(s� µi⇤Ii⇤ , i, t) Fg(s� µi⇤Ii⇤ , t+ 1))

+ si⇤�c

= A(i, t+ 1).

This completes the proof. ⌅

Remarks. During the rebuttal of this paper, we realized that Bubeck et al. [5] applied similar
inductive reasoning techniques to prove the optimality of the greedy policy for their optimal discovery
problem (Lemma 2 of [5]). To quantitatively measure how good is the greedy policy, we also give a
formula to show the exact difference between A(s, i, t) and A(s, i⇤, t) in Sec. B.3.

B.2 Computation of expected reward

Lemma 4 indicates r⇡g (µ) can be computed in a recursive way. However, the recursive method
has time complexity O(2K). It is impractical when K is large. In the following we show that the
expected reward of policy ⇡g can be computed in polynomial time.

B.2.1 Transition probability list of greedy policy

Assume we explore the communities via the greedy policy when the communities already have partial
realization . Define si,0 = 1� µici() and s0 = (s1,0, . . . , sm,0). The greedy policy will choose
community i

⇤
0 to explore, where i

⇤
0 2 argmaxi si,0. After one step exploration, the communities

stay at the same status s0 with probability q0 := 1 � si⇤0 . The communities transit to next status
s1 := s0 � µi⇤0Ii⇤0 with probability p0 := si⇤0 . We recursively define st+1 as st � µi⇤t Ii⇤t , where
i
⇤
t 2 argmaxi si,t. We call pt := maxi si,t the transition probability and qt := 1 � pt the loop

probability. Each time the communities transit to next status, a new member will be met. During the
exploration, the number of different statuses the communities can stay is at most 1 +

P
i di � ci()

since there are D :=
P

i di� ci() unseen members in total. Based on above discussion, we define a
transition probability list P(⇡g

,) := (p0, . . . , pD), where pD ⌘ 0. The list P(⇡g
,) is unique for

any initial partial realization . Fig. 1 gives an example to demonstrate statuses and the list P(⇡g
,).

Corollary 1. Let be any partial realization corresponding to the status s = (s1, . . . , sm). The
number of unseen members

P
i di � ci() is denoted as D. The probability list P(⇡g

,) =
(p0, . . . , pD) can be obtained by sorting [mi=1{si, si � µi, . . . , µi} [{0} in descending order.

Corollary 1 is an important observation based on the definition of transition probability list.

(1, 1) (23 ,1) (23 ,
3
4
) (2

3
,
1
2) (13 ,

1
2
) (1

3
,
1
4) (0, 1

4
) (0, 0)

p0 = 1 p1 = 1 p2 = 3
4 p3 = 2

3 p4 = 1
2 p5 = 1

3 p6 = 1
4

i
⇤
0 = 1 i

⇤
1 = 2 i

⇤
2 = 2 i

⇤
3 = 1 i

⇤
4 = 2 i

⇤
5 = 1 i

⇤
6 = 2

s0 s1 s2 s3 s4 s5 s6 s7

Figure 1: Illustration with d = (3, 4) and empty partial realization. The initial status is (1, 1). The
list P(⇡g

, ;) = (1, 1, 3/4, 2/3, 1/2, 1/3, 1/4, 0).

B.2.2 Compute the expected reward efficiently

Lemma 6. Let be a partial realization and s0 be the corresponding status. The number of
unseen members is denoted as D =

P
i di � ci(). The transition probability list is P(⇡g

,) =
(p0, . . . , pD). Then

F⇡g (, t) = Fg(s0, t) =

min{t,D}X

j=0

(f(j + c())� f(c()))⇥
⇣
⇧j�1

l=0 pj

⌘
⇥

0

@
X

I2I(j,t�j)

⇧l2Iql

1

A ,

14

where ql = 1� pl and I(j, t� j) consists of subsets of multi-set {0, . . . , j}t�j with fixed size t� j.

Proof. When the communities ends at status sj , we meet j distinct members. Let Pr(sj⇤) be the
probability for this event. We can the transition step as the communities transit to a new status, and
the loop step as the communities stay at the same status. When the communities ends at status sj , we
have j transition steps and t� j loop steps. The communities takes loops at statuses {s0, . . . , sj}.
Hence,

Pr(sj⇤) =
X

I2I(j,t�j)

⇧j�1
l=0 pj ·⇧l2I(1� pl) = ⇧j�1

l=0 pj ⇥
X

I2I(j,t�j)

⇧l2Iql.

The reward F⇡g (, t) =
Pmin{t,D}

j=1 (f(j + c())� f(c()))⇥ Pr(sj⇤). ⌅

For later analysis, we define the loop probability

L({q0, . . . , qj}, t) :=
X

I2I(j,t)

⇧l2Iql

since
P

I2I(j,t) ⇧l2Iql is just a function of {q0, . . . , qj} and t (t � 1). Actually, L({q0, . . . , qj}, t)
aggregates the product of all possible t elements in {q0, . . . , qj}. Note that each element in
{q0, . . . , qj} can be chosen multiple times. W.l.o.g, we define L({q0, . . . , qj}, t) = 1 and ⇧t�1

l=0pl = 1
when t = 0. Based on the definition, we can write L({q0, . . . , qj}, t) in a recursive way as follows.

L({q0, . . . , qj}, t) =
tX

s=0

q
s
aL({q0, . . . , qj}\{qa}, t� s). (10)

Here a 2 {0, . . . , j}. According to Eq. 10, the probability
P

I2I(j,t�j) ⇧l2Iql can be computed in
O((t � j)j2) via dynamic programming. Hence r⇡g (µ) = Fg((1, . . . , 1),K) can be computed in
O(Kmin{K,D}2) according to Lemma 6.

B.3 Reward gap between optimal policy and sub-optimal policy

Recall that A(s, i, t) is the expected reward of the following adaptive process.

1. At the first step, choose an arbitrary community Ci (different from Ci⇤) to explore.
2. From the second step to the (t+ 1)-th step, explore communities with the greedy policy ⇡g .

Here s is the initial status of the communities. Lemma 5 only proves that A(s, i, t) Fg(s, t+ 1).
In the following, we aim to answer the following question:

• How much is Fg(s, t+ 1) larger than A(s, i, t)?

B.3.1 Analysis of loop probability

The following two corollaries show the basic properties of the loop probability.
Corollary 2. For a transition probability list P(⇡g

,) = (p0, . . . , pD), we have

MX

j=0

p0 ⇥ · · ·⇥ pj�1 ⇥ L({q0, . . . , qj}, t� j) = 1,

where qj = 1� pj and M = min{t,D}.

Corollary 2 says the probabilities that the communities ends at status {s0, . . . , sD} sums up to 1.
Corollary 3. For a transition probability list P(⇡g

,) = (p0, . . . , pD) and a, b 2 {0, . . . , j}
(j D, t � 1), we have

L({q0, . . . , qj}\{qa}, t)� L({q0, . . . , qj}\{qb}, t) = (qb � qa)L({q0, . . . , qj}, t� 1),

where D =
P

i di � ci() and qj = 1� pj .

15

Proof. We prove the corollary according to Eq. (10).

L({q0, . . . , qj}\{qa}, t)� L({q0, . . . , qj}\{qb}, t)

=
tX

s=0

(qsb � q
s
a)L({q0, . . . , qj}\{qa, qb}, t� s) (by Eq. (10))

=
t�1X

s=0

(qs+1
b � q

s+1
a)L({q0, . . . , qj}\{qa, qb}, t� s� 1) (replace s� 1 as s0)

=(qb � qa)
t�1X

s=0

sX

m=0

q
s�m
b q

m
a L({q0, . . . , qj}\{qa, qb}, t� 1� s) (sum of geometric sequence)

=(qb � qa)L({q0, . . . , qj}, t� 1). (by definition or expanding Eq. (10))

This completes the proof. ⌅

B.3.2 Pseudo reward

Lemma 7. For a transition probability list P(⇡g
,) = (p0, . . . , pD) and a non-decreasing function

f(x), a pseudo reward R(k) is defined as

R(k) = qk

MX

j=0

f(j)⇥ p0 ⇥ · · ·⇥ pj�1 ⇥ L({q0, . . . , qj}, t� j)

+ pk

k�1X

j=0

f(j + 1)⇥ p0 ⇥ · · ·⇥ pj�1 ⇥ L({q0, . . . , qj}, t� j)

+
M 0X

j=k

f(j + 1)⇥ p0 ⇥ · · ·⇥ pj ⇥ L({q0, . . . , qj+1}\{qk}, t� j),

where M = min{D, t} and M
0 = {D � 1, t}. We claim that for 0 k M � 1,

R(k)�R(k + 1)=(pk�pk+1)

0

@
kX

j=0

(f(j + 1)� f(j))p0 ⇥ · · ·⇥ pj�1 ⇥ L({q0, . . . , qj}, t� j)

1

A .

Proof. We expand R(k)�R(k + 1) as follows using the definition.

R(k)�R(k + 1)

= �(pk � pk+1)
MX

j=0

f(j)⇥ p0 ⇥ · · ·⇥ pj�1 ⇥ L({q0, . . . , qj}, t� j)

+ (pk � pk+1)
k�1X

j=0

f(j + 1)⇥ p0 ⇥ · · ·⇥ pj�1 ⇥ L({q0, . . . , qj}, t� j)

+ f(k + 1)⇥ p0 ⇥ · · ·⇥ pk�1 ⇥ pk ⇥ L({q0, . . . , qk+1}\{qk}, t� k) (from R(k))
� f(k + 1)⇥ p0 ⇥ · · ·⇥ pk�1 ⇥ pk+1 ⇥ L({q0, . . . , qk}, t� k) (from R(k + 1))

+
M 0X

j=k+1

f(j + 1)⇥ p0 ⇥ · · ·⇥ pj ⇥ (L({q0, . . . , qj+1}\{qk}, t� j)

�L({q0, . . . , qj+1}\{qk+1}, t� j))
| {z }

(pk�pk+1)
PM�1

j=k+1 f(j+1)⇥p0⇥···⇥pj⇥L({q0,...,qj+1},t�j�1)

.

The last line of above equation can be rewritten with the Corollary 3. The summation from j = k + 1
to j = M � 1 in the last line cancels out with the second line when j = k + 2 to j = M . The

16

summation from j = 0 to j = k in the second line can be combined with the third line. We continue
the computation of R(k)�R(k + 1) by rearranging its expansion.

R(k)�R(k + 1)

=� (pk � pk+1)f(k + 1)⇥ p0 ⇥ · · ·⇥ pk ⇥ L({q0, . . . , qk+1}, t� k � 1)

� (pk � pk+1)f(k + 1)⇥ p0 ⇥ · · ·⇥ pk�1 ⇥ L({q0, . . . , qk}, t� k)

+ (pk � pk+1)
Xk

j=0
(f(j + 1)� f(j))⇥ p0 ⇥ · · ·⇥ pj�1 ⇥ L({q0, . . . , qj}, t� j)

+ f(k + 1)⇥ p0 ⇥ · · ·⇥ pk�1 ⇥ pk ⇥ L({q0, . . . , qk+1}\{qk}, t� k)

� f(k + 1)⇥ p0 ⇥ · · ·⇥ pk�1 ⇥ pk+1 ⇥ L({q0, . . . , qk}, t� k).

Define �k as the sum of the 2nd, 3rd, 5th, 6th line in above equation. We have

R(k)�R(k + 1)

= �(pk � pk+1)⇥ f(k + 1)⇥ p0 ⇥ · · ·⇥ pk�1 ⇥ L({q0, . . . , qk}, t� k)

�(pk � pk+1)⇥ f(k + 1)⇥ p0 ⇥ · · ·⇥ pk ⇥ L({q0, . . . , qk+1}, t� k � 1)

+f(k + 1)⇥ p0 ⇥ · · ·⇥ pk�1 ⇥ pk ⇥ L({q0, . . . , qk+1}\{qk}, t� k)

�f(k + 1)⇥ p0 ⇥ · · ·⇥ pk�1 ⇥ pk+1 ⇥ L({q0, . . . , qk}, t� k)

9
>>=

>>;
, �k

+ (pk � pk+1)
kX

j=0

(f(j + 1)� f(j))⇥ p0 ⇥ · · ·⇥ pj�1 ⇥ L({q0, . . . , qj}, t� j).

We rewrite �k as follows.

�k/f(k + 1) = p0 ⇥ · · ·⇥ pk�1 ⇥ pk ⇥ L({q0, . . . , qk+1}\{qk}, t� k)

�p0 ⇥ · · ·⇥ pk�1 ⇥ pk ⇥ L({q0, . . . , qk}, t� k)

+p0 ⇥ · · ·⇥ pk�1 ⇥ pk ⇥ L({q0, . . . , qk}, t� k)

�
cancel each other

� (pk � pk+1)⇥ p0 ⇥ · · ·⇥ pk�1 ⇥ L({q0, . . . , qk}, t� k)

� (pk � pk+1)⇥ p0 ⇥ · · ·⇥ pk ⇥ L({q0, . . . , qk+1}, t� k � 1)

� p0 ⇥ · · ·⇥ pk�1 ⇥ pk+1 ⇥ L({q0, . . . , qk}, t� k)).

According to Corollary 3, the first line and the second line of above equation equals to (pk � pk+1)⇥
p0 ⇥ · · ·⇥ pk ⇥ L({q0, . . . , qk+1}, t� k � 1), which cancels out with the fifth line. Hence, we have

�k/f(k + 1) = p0 ⇥ · · ·⇥ pk�1 ⇥ pk ⇥ L({q0, . . . , qk}, t� k)

� (pk � pk+1)⇥ p0 ⇥ · · ·⇥ pk�1 ⇥ L({q0, . . . , qk}, t� k)

� p0 ⇥ · · ·⇥ pk�1 ⇥ pk+1 ⇥ L({q0, . . . , qk}, t� k))

= 0.

With above result of �k = 0, we prove that

R(k)�R(k + 1)

= (pk � pk+1)

0

@
kX

j=0

(f(j + 1)� f(j))p0 ⇥ · · ·⇥ pj�1 ⇥ L({q0, . . . , qj}, t� j)

1

A � 0.

This completes the proof. ⌅

B.3.3 Reward gap

Let , 0
,

00 be any partial realization corresponding to the status s, s�µi⇤Ii⇤ , s�µiIi respectively.
Define P(⇡g

,) = (p0, . . . , pD), where D =
P

i di � ci(). Recalling Corollary 1, we know that
(p0, . . . , pD�1) can be obtained by sorting [mi=1{si, si � µi, . . . , µi}. Assume the first time si

appear in (p0, . . . , pD) is the k-th entry, i.e., k = min{k0 : 0 k
0 D, pk0 = si}. According to

Corollary 1, we have the following.

P(⇡g
,

0) = (p1, . . . , pD),

P(⇡g
,

00) = (p0, . . . , pk�1, pk+1, . . . , pD).

17

Note that p0 = si⇤ and pk = si. Let M = min{D, t}, M 0 = min{D � 1, t}, and f
0(j) =

f(j + c())� f(c()). The second line of Eq. (9) is

R1 = q0

MX

j=0

f
0(j)⇥ p0 ⇥ · · ·⇥ pj�1 ⇥ L({q0, . . . , qj}, t� j) ((1� si⇤)Fg(s, t))

+ p0

M 0X

j=0

f
0(j + 1)⇥ p1 ⇥ · · ·⇥ pj ⇥ L({q1, . . . , qj+1}, t� j). (si⇤Fg(s� µi⇤Ii⇤ , t) + si⇤�c)

In fact, R1 = Fg(s, t+ 1) based on Lemma 4. The first line of Eq. (9) is

R2 = qk

MX

j=0

f
0(j)⇥ p0 ⇥ · · ·⇥ pj�1 ⇥ L({q0, . . . , qj}, t� j)

+ pk

k�1X

j=0

f
0(j + 1)⇥ p0 ⇥ · · ·⇥ pj�1 ⇥ L({q0, . . . , qj}, t� j)

+
M 0X

j=k

f
0(j + 1)⇥ p0 ⇥ · · ·⇥ pj ⇥ L({q0, . . . , qj+1}\{qk}, t� j).

Our goal is to measure the gap R1 � R2. Let Probs,t(i) be the probability we can meet i distinct
members if we explore communities (whose initial status is s) with greedy policy for t steps.
According to Lemma 7, we have

Fg(s, t+ 1)�A(s, i, t) =
k�1X

j=0

(R(j)�R(j + 1))

=
k�1X

j=0

(pj � pj+1)

jX

o=0

(f 0(o+ 1)� f
0(o))Probs,t(o)

!

=
k�1X

o=0

(f 0(o+ 1)� f
0(o))Probs,t(o)

0

@
k�1X

j=o

pj � pj+1

1

A

=
k�1X

j=0

(f 0(j + 1)� f
0(j))(pj � pk)Probs,t(j)

When the reward equals to the number of distinct members, we have

Fg(s, t+ 1)�A(s, i, t) =
k�1X

j=0

(pj � pk)Probs,t(j).

Besides, the gap Fg(s, t+ 1)�A(s, i, t) increases as k increases, which means the worse choice we
have at first, the larger reward gap we have at end.

C Basics of online learning problems

C.1 Set size estimation by collision counting

Suppose we have a set Ci = {u1, · · · , udi} whose population di is unknown. Let u, v be two
elements selected with replacement from Ci, and Yu,v denote a random variable that takes value
1 if u = v (a collision) and 0 otherwise. The expectation of Yu,v equals to 1

di
, i.e., E[Yu,v] =

1
di

.
Assume we sample ki elements with replacement uniformly at random from set Ci. Let Si be the set
of samples. With the sample Si, we compute the estimator for di as

d̂i =
ki(ki � 1)

2Xi
,

18

here Xi =
P

u2Si,v2Si\{u} Yu,v is the number of collisions in Si. According to the Jensen’s
inequality3, we have di E[d̂i], i.e., d̂i is a biased estimator. The estimator is invalid when Xi = 0.
Since the equality only occurs when Var[Xi] = 0, which is not the case Here. We have di < E[d̂i].
Independence. Let Si = {v1, · · · , vki}. For the two random variable Yvx,vy (1 x < y ki) and
Yvx0 ,vy0 (1 x

0
< y

0 ki), we consider three difference cases.

1. There are
�ki

2

�
occurrences when x = x

0
, y = y

0. Here E[Yvx,vyYvx0 ,vy0] = 1/di.

2. There are 6
�ki

3

�
occurrences when x = x

0
, y 6= y

0 or x 6= x
0
, y = y

0. E[Yvx,vyYvx0 ,vy0] = 1/d2i .

3. There are 6
�ki

4

�
occurrences when x 6= x

0
, y 6= y

0. Here E[Yvx,vyYvx0 ,vy0] = 1/d2i .

We say that pairs (vx, vy) and (vx0 , vy0) are different if x 6= x
0 or y 6= y

0. When (vx, vy) and
(vx0 , vy0) are different, we have E[Yvx,vyYvx0 ,vy0] = E[Yvx,vy]E[Yvx0 ,vy0] = 1/d2i . Above discussion
indicates that the

�ki

2

�
pairs of random variables obtained from Si are 2-wise independent.

Variance. We compute the variance Var[Xi] = E[X2
i]� E2[Xi] in the following.

Var[Xi] =
ki(ki � 1)

2di
+

ki(ki � 1)(ki � 2)

d2i

+
ki(ki � 1)(ki � 2)(ki � 3)

4d2i
� k

2
i (ki � 1)2

4d2i

=

✓
ki

2

◆
1

di
(1� 1

di
) =

✓
ki

2

◆
Var[Yu,v].

Collision Since the estimator is based on the collision counting, we need to ensure that Xi > 0 with
high probability. Let Bki denote the event that the ki samples {v1, . . . , vki} are distinct. We have

Pr{Bk} = 1 · (1� 1

di
)(1� 2

di
) · · · (1� ki � 1

di
) e

�1/die
�2/di · · · e�(ki�1)di

= e
�

Pki�1
j=1 j/di = e

�ki(ki�1)/2di .

To ensure that Xi > 0 with probability no less than 1� �, we have

ki �

1 +

r
8di ln

1

�
+ 1

!
/2.

C.2 Concentration bound for variables with local dependence

Note that the pairs Yu,v and Yu0,v0 are not mutually independent. Actually, their dependence can be
described with a dependence graph [9, 15]. The Chernoff-Hoeffding bound in [14] can not be used
directly for our estimator of µi. In the following, we present a concentration bound that is applicable
to our problem.
Definition 1 (U-statistics). Let ⇠1, . . . , ⇠n be independent random variables, and let

X :=
X

1i1···id

fi1,...,id(⇠i1 , . . . , ⇠id).

Lemma 8 (Chapter 3.2 [9]). If a fi1,...,id(⇠i1 , . . . , ⇠id) b for every i1, . . . , id for some reals
a b, we have

Pr

⇢
|X � E[X]| � ✏

✓
n

d

◆�
 2 exp

✓
�2bn/dc✏2

(b� a)2

◆
.

In our problem, if we get ki samples from set Ci, then the number of collisions satisfies

Pr

⇢
|Xi � E[Xi]| � ✏

✓
ki

2

◆�
 2 exp

�
�2bki/2c✏2

�
.

Above inequality indicates that the actual number of independent pairs is bki/2cwhen using collisions
in ki samples to estimate µi.

3If X is a random variable, and ' is a convex function, then '(E[X]) E['(X)].

19

D Regret Analysis for Non-Adaptive Problem

D.1 Supporting Corollaries

Corollary 4. For action k with
Pm

i=1 ki = K and ki � 1, we have
Pm

i=1

�ki

2

�

�K�m+1

2

�
.

Proof. We prove the corollary by simple calculation.

mX

i=1

✓
ki

2

◆
�
✓
K �m+ 1

2

◆
=

1

2

mX

i=1

ki(ki � 1)�

1 +

mX

i=1

(ki � 1)

!
mX

i=1

(ki � 1)

!!

=
1

2

0

@
mX

i=1

(ki � 1)2 �

mX

i=1

(ki � 1)

!2
1

A 0. ⌅

D.2 Basics

To compare with the CUCB algorithm introduced in [20] for general CMAB problem, we propose an
revised Algo. 3 that is consistent with the CUCB algorithm in [20]. We revise the Line 6-8 in Algo. 3
as follows.

Line 6: For i 2 [m], Ti Ti + {|Si| > 1},

Line 7: For i 2 [m] and |Si| > 1, Xi,t
b|Si|c/2X

x=1

{u2x�1 = u2x}/b|Si/2|c,

Line 8: For i 2 [m] and |Si| > 1, µ̂i µ̂i + (Xi,t � µ̂i)/Ti.

(11)

Note that µ̂i in Eq. (11) is also an unbiased estimator of µi. Then we can obtain the regret bound of
the revised Algo. 3 by applying the Theorem 4 in the extended version of [20] directly.

Regµ(T)
mX

i=1

48
�K�m+1

2

�2
m lnT

�i
min

+ 2

✓
K �m+ 1

2

◆
m+

⇡
2

3
·m ·�max.

We add superscript r to differentiate the corresponding random variables in the revised Algo. 3 from
the original ones. E.g., T r

i,t is the value of T r
i in the revised Algo. 3 at the end of round t. Recall that

K
0 = K �m+ 1, which is the maximum exploration times for a community in each round.

D.3 Proof framework

We first introduce a definition which describes the event that µ̂i,t�1 (µ̂r
i,t�1) is accurate at the

beginning of round t.

Definition 2. We say that the sampling is nice at the beginning of round t if for every community
i 2 [m], |µ̂i,t�1 � µi| ⇢i,t (resp. |µ̂r

i,t�1 � µi| ⇢
r
i,t), where ⇢i,t = 2

q
3 ln t

2Ti,t�1
(resp. ⇢ri,t =

2
q

3 ln t
2T r

i,t�1
) in round t. Let Nt (resp. N r

t) be such event.

Lemma 9. For each round t � 1, Pr {¬Nt} 2mbK 0
/2ct�2 (resp. Pr {¬N r

t } 2mt
�2).

20

Proof. For each round t � 1, we have

Pr {¬Nt} = Pr

(
9i 2 [m], |µ̂i,t�1 � µi| �

s
3 ln t

2Ti,t�1

)

X

i2[m]

Pr

(
|µ̂i,t�1 � µi| �

s
3 ln t

2Ki,t�1

)

=
X

i2[m]

(t�1)bK0/2cX

k=1

Pr

(
Ti,t�1 = k, |µ̂i,t�1 � µi| �

s
3 ln t

2Ti,t�1

)

X

i2[m]

(t�1)bK0/2cX

k=1

2

t3
< 2mbK 0

/2ct�2
. (Hoeffding’s inequality [14])

When Ti,t�1 = k, µ̂i,t is the average of k i.i.d. random variables Y
[1]
i , · · · , Y [k]

i , where Y
[j]
i is a

random variable that indicates whether two members selected with replacement from Ci are the same.
Since each community is explored at most K 0 times in each round, Ti,t�1 (t � 1)bK 0

/2c. The
last line leverages the Hoeffding’s inequality [14]. By replacing the summation range k 2 [1, (t�
1)bK 0

/2c] with k 2 [1, (t� 1)] in the 3rd line of above equation, we have Pr {¬N r
t } 2mt

�2. ⌅

Secondly, we use the monotonicity and bounded smoothness properties to bound the reward gap
�kt = rk⇤(µ)� rkt(µ) between our action kt and the optimal action k⇤.

Lemma 10. If the event Nt holds in round t, we have

�kt
mX

i=1

✓
ki,t

2

◆
T (�

i
min, Ti,t�1).

Here the function T (M, s) is defined as

T (M, s) =

8
><

>:

2 if s = 0,

2
q

6 ln t
s if 1 s lT (M),

0 if s � lT (M) + 1,

where

lT (M) =
24
�K0

2

�2
lnT

M2
.

Proof. By Nt (i.e.,
¯
µt µ) and the monotonicity of rk(µ), we have

rkt(
¯
µt) � rk⇤(

¯
µt) � rk⇤(µ) = rkt(µ) +�kt .

Then by the bounded smoothness properties of reward function, we have

�kt rkt(
¯
µt)� rkt(µ)

mX

i=1

✓
ki,t

2

◆
(µi �

¯
µi,t).

We intend to bound �kt by bounding µi �
¯
µi,t. Before doing so, we perform a transformation. Let

Mkt = maxi2[m],ki,t>1 �
i
min. Since the action kt always satisfies �kt � maxi2[m],ki,t>1 �

i
min,

21

Ti,0Ti,1 Ti,2 Ti,3 Ti,4 Ti,5 Ti,6 lT (�i
min)

· · ·

s

T (M, s) = 2
q

6 ln t
s

j
ki,2

2

k

j
ki,3

2

k
j
ki,4

2

kj
ki,5

2

kj
ki,6

2

k

Figure 2: Demonstration of the regret summation
PT

t=2bki,t/2cT (�i
min, Ti,t�1). It is obvious that

when ki,t = K
0, then the shaded area (colored with orange) covered by the rectangles is maximized.

we have �kt �Mkt . So
P

i

�ki,t

2

�
(µi �

¯
µi,t) � �kt �Mkt . Therefore,

�kt
mX

i=1

✓
ki,t

2

◆
(µi �

¯
µi,t) �Mkt + 2

mX

i=1

✓
ki,t

2

◆
(µi �

¯
µi,t)

 �
Pm

i=1

�ki,t

2

�
�K0

2

� Mkt + 2
mX

i=1

✓
ki,t

2

◆
(µi �

¯
µi,t) (Corollary 4:

Pm
i=1

�ki,t

2

�

�K0

2

�
)

= 2
mX

i=1

✓
ki,t

2

◆
(µi �

¯
µi,t)�

Mkt

K 0(K 0 � 1)

�

 2
X

i

✓
ki,t

2

◆
(µi �

¯
µi,t)�

�i
min

K 0(K 0 � 1)

�
. (by definition of Mkt)

By Nt, we have µi �
¯
µi,t min{2⇢i,t, 1}. So

µi �
¯
µi,t �

�i
min

K 0(K 0 � 1)
 min{2⇢i,t, 1}�

�i
min

K 0(K 0 � 1)
 min

(s
6 ln t

Ti,t�1
, 1

)
� �i

min

K 0(K 0 � 1)
.

If Ti,t�1 lT (�i
min), we have µi �

¯
µi,t � �i

min
K0(K0�1) min

nq
6 ln t
Ti,t�1

, 1
o
 1

2T (�
i
min, Ti,t�1).

If Ti,t�1 > lT (�i
min) + 1, then

q
6 ln t
Ti,t�1

 �i
min

K0(K0�1) , so (µi �
¯
µi,t) � �i

min
K0(K0�1) 0 =

T (�i
min, Ti,t�1). In conclusion, we have

�kt
mX

i=1

✓
ki,t

2

◆
T (�

i
min, Ti,t�1). ⌅

Above result is also valid for the revised Algo. 3, i.e., �r
kt

Pm

i=1

�ki,t

2

�
T (�i

min, T
r
i,t�1). Our

third step is to prove that when Nt (resp. N r
t) holds, the regret is bounded in O(lnT).

Theorem 3. Algo. 3 with non-adaptive exploration method has regret as follows.

Regµ(T)
mX

i=1

48
�K0

2

�
K lnT

�i
min

+ 2

✓
K

0

2

◆
m+

j
K0

2

k
⇡
2

3
m�max = O

mX

i=1

K
03 log T

�i
min

!
. (6)

22

Proof. We first prove the regret when the event Nt holds. In each run, we have

TX

t=1

1({�kt ^Nt}) ·�kt
TX

t=1

mX

i=1

✓
ki,t

2

◆
T (�

i
min, Ti,t�1)

=
mX

i=1

X

t02{t|1tT,ki,t>1}

✓
ki,t0

2

◆
T (�

i
min, Ti,t0�1).

Hence, we just assume ki,t > 1 for t > 0.

TX

t=1

1({�kt ^Nt}) ·�kt
mX

i=1

TX

t=1

✓
ki,t

2

◆
T (�

i
min, Ti,t�1)

mX

i=1

2

✓
ki,1

2

◆
+K

0
mX

i=1

TX

t=2

(ki,t � 1)

2
T (�

i
min, Ti,t�1)

 2m

✓
K

0

2

◆
+K

0
mX

i=1

TX

t=2

�
ki,t

2

⌫
T (�

i
min, Ti,t�1). (Fig. 2)

To maximize the summation
PT

t=2b
ki,t

2 cT (�
i
min, Ti,t�1), we just need to let ki,t = K

0 when t > 1.

TX

t=1

1({�kt ^Nt}) ·�kt 2m

✓
K

0

2

◆
+K

0
lT (�i

min)/bK
0/2cX

d=0

�
K

0

2

⌫
T

�
�i

min, 1 + dbK 0
/2c

�

 2m

✓
K

0

2

◆
+K

0
mX

i=1

lT,KX

d=0

p
24 lnT bK 0

/2cp
1 + dbK 0/2c

(lT,K := lT (�i
min)

bK0/2c)

 2m

✓
K

0

2

◆
+K

0
mX

i=1

Z lT,K

x=0

p
24bK 0/2c lnTp

x
dx

= 2m

✓
K

0

2

◆
+K

0
mX

i=1

q
96lT (�i

min, T) lnT

= 2m

✓
K

0

2

◆
+

mX

i=1

48
�K0

2

�
K

0 lnT

�i
min

.

On the other hand, when Nt does not hold, we can bound the regret as �max. Hence,

E
"

TX

t=1

1({�kt ^ ¬Nt}) ·�kt

#
 �max

TX

t=1

2mbK 0
/2ct�2 mbK 0

/2c⇡2

3
�max.

Based on above discussion, we have

Regµ(T)
mbK 0

/2c⇡2

3
�max + 2m

✓
K

0

2

◆
+

mX

i=1

48
�K0

2

�
K

0 lnT

�i
min

. ⌅

Theorem 7. The revised Algo. 3 has regret as follows.

Regrµ(T)
mX

i=1

48
�K0

2

�2
lnT

�i
min

+ 2

✓
K

0

2

◆
m+

⇡
2

3
·m ·�max. (12)

23

Proof. We prove the regret when the event N r
t holds. In each run, we have

TX

t=1

1(
�
�r

kt
^N r

t

) ·�r

kt

TX

t=1

mX

i=1

✓
ki,t

2

◆
T (�

i
min, T

r
i,t�1)

=
mX

i=1

T r
i,TX

s=0

✓
ki,s

2

◆
T (�

i
min, s)

 2m

✓
K

0

2

◆
+

✓
K

0

2

◆ mX

i=1

lT (�i
min)X

s=1

r
24 lnT

s

 2m

✓
K

0

2

◆
+

mX

i=1

48
�K0

2

�2
lnT

�i
min

.

On the other hand, Pr{¬N r
t } 2mt

�2. Hence we have

Regrµ(T) = E
"

TX

t=1

1({�kt ^ ¬Nt}) ·�kt

#
+ E

"
TX

t=1

1({�kt ^Nt}) ·�kt

#

 m⇡
2

3
�max + 2m

✓
K

0

2

◆
+

mX

i=1

48
�K0

2

�2
lnT

�i
min

. ⌅

The bound in Eq. (12) is tighter than the one obtained by directly applying [20].

D.4 Comparison

Estimator. Let µ̂i,t be the estimator computed in Algo. 3 by end of round t and µ̂
r
i,t be the estimator

computed with revision in Eq. (11) by end of round t. Both of µ̂i,t and µ̂
r
i,t are unbiased estimator

of µi. However, µ̂i,t is a more efficient estimator than µ̂
r
i,t. More specifically, Var[µ̂i,t] = µi(1 �

µi)/(
Pt

t0=1bki,t0/2c) and Var[µ̂r
i,t] = µi(1�µi) · (

Pt
t0=1 1/bki,t/2c)/(T r

i,t)
2. Here ki,t is the size

of Si in round t, and T
r
i,t =

Pt
t0=1 {ki,t0 > 1}. Since the harmonic mean is always not larger

than arithmetic mean, i.e., T r
i,t/(

Pt
t0=1 1/bki,t0/2c) (

Pt
t0=1bki,t0/2c)/T r

i,t, we conclude that
Var[µ̂i,t] Var[µ̂r

i,t].

Regret Bound. The regret bound in Eq. (6) is tighter than the one in Eq. (12) up to (K 0 � 1)/2
factor in the O(lnT) term. The bound in Eq. (6) has a larger constant term. That’s because we use a
smaller confidence radius, which leads to earlier exploitation of Algo. 3 than the revised one.

D.5 Full information feedback

In the following, we prove the constant regret bound of the Algo. 3 with feeding the empirical mean
in CommunityExplore and making revision defined in Eq. (7).

Proof. We first bound �kt by
Pm

i=1 |µi,t � µi|.
�kt = rk⇤(µ)� rkt(µ) = rk⇤(µ)� rkt(µ̂) + rkt(µ̂)� rkt(µ)

 rk⇤(µ)� rk⇤(µ̂) + rkt(µ̂)� rkt(µ) (rk⇤(µ̂) rkt(µ̂))
 |rk⇤(µ)� rk⇤(µ̂)|+ |rkt(µ̂)� rkt(µ)|

mX

i=1

✓✓
k
⇤
i

2

◆
+

✓
ki,t

2

◆◆
|µ̂i,t�1 � µi| .

Leverage the fact that
Pm

i=1

�ki,t

2

�

�K0

2

�
. If |µ̂i,t�1 � µi| < �min

K0(K0�1) , then

�kt
mX

i=1

✓✓
k
⇤
i

2

◆
+

✓
ki,t

2

◆◆
�min

K 0(K 0 � 1)
< �min,

24

which means �kt = 0. Hence,

Pr (�kt > 0)
mX

i=1

Pr

✓
|µ̂i,t�1 � µi| �

�min

K 0(K 0 � 1)

◆

mX

i=1

2e�2(Ti,t�1/2)�
2
min/(K

0(K0�1))2
. (Theorem 3.2 in [9])

The second line of above inequality using Theorem 3.2 in [9]. Note that the Ti,t�1 member pairs
using for collision counting are not independent with each other. We need to construct a dependence
graph G to model their dependence. The dependence graph here is just a line with Ti,t�1 nodes.
Since the fractional chromatic number of the dependence graph is 2, we have a 1/2 factor for Ti,t�1

in the exponential. The regret is bounded as

Regµ(T)
TX

t=1

mX

i=1

�kt2e
�Ti,t�1�

2
min/(K

0(K0�1))2

 2�max +
mX

i=1

TX

t=3

�kt2e
�(t�2)�2

min/(K
0(K0�1))2 (Ti,t�1 � t� 2)

 2�max + 2m�max

Z 1

t=0
e
�t�2

min/(K
0(K0�1))2dt

2 + 8me

2

✓
K

0

2

◆2

/�2
min

!
�max. ⌅

E Regret Analysis for Adaptive Problem

E.1 Transition probability list of policy ⇡t

Similar to the discussion in Section B.2.1, we define a transition probability list P(⇡t
,) for the

policy ⇡t and write the reward function r⇡t(µ) with P(⇡t
, ;).

Definition. Assume the initial partial realization is . Let s0 be the status corresponding to . Recall
that s0 = (s1,0, . . . , sm,0) = (1� µ1c1(), . . . , 1� µmcm()). At the first step, policy ⇡t chooses
community i

⇤
0 = argmaxi2[m] 1� ci()

¯
µi,t. With probability q

⇡t

0 := ci⇤0 ()µi⇤0 , the communities
stay at the same status s0. With probability p

⇡t

0 := 1� ci⇤0 ()µi⇤0 , the communities transit to next
status s1 := s0 � µi⇤0I . Note that

1� ci()
¯
µi,t =

µi � (1� si,0)
¯
µi,t

µi
= ¯

µi,t

µi
si,0 +

µi �
¯
µi,t

µi
.

We recursively define sk+1 as sk�µi⇤k
Ii⇤k where i⇤k 2 maxi2[m] (

¯
µi,t/µi)si,k +(µi�

¯
µi,t)/µi. The

transition probability p
⇡t

k := si⇤k,k
. We define the transition probability list P(⇡t

,) = (p⇡
t

0 , . . . , p
⇡t

D)
where D =

Pm
i=1(di � ci()) is the number of distinct member we haven’t meet under the partial

realization . Note that it is possible that p⇡
t

k = 0. In this case, there is already no unmet members in
i
⇤
k. The communities will be stuck in status sk since the policy ⇡t always chooses community i

⇤
k to

explore after the communities reach status sk. Hence, if k is the smallest index such that p⇡
t

k = 0, we
define p

⇡t

k0 = 0 for all k0 > k.

Compute P(⇡t
,). Define Bi() = {1� ci()µi, 1� (1 + ci())µi, . . . , µi, 0} for i 2 [m]. Let

bi 2 Bi(), bj 2 Bj(), i, j 2 [m]. We define a sorting comparator as follows.

less(bi, bj) = {(
¯
µi,t/µi) · bi + (µi �

¯
µi,t)/µi < (

¯
µj,t/µi) · bj + (µj �

¯
µj,t)/µj}

If bi � bj and less(bi, bj) = 1, we can infer that
¯
µi,t/µi �

¯
µj,t/µj , which means the size of

community j is more overestimated than the size of community i. The overestimation leads to wrong
order between bi and bj when using the comparator less. The list P(⇡t

,) can be computed as
follows. Firstly, we sort elements in [i2[m]Bi with the comparator less. Secondly, we truncate the

25

sorted list at the first zero elements. Thirdly, we paddle zeros at the end of list until the length is
D + 1. All the arguments in Section B.2-B.1 about P(⇡g

,) can be easily extended to P(⇡t
,).

Expected reward. In the following, we still use the extended definition of reward

R(k,�) = f

mX

i=1

�����

ki[

⌧=1

{�(i, ⌧)}

�����

!
,

where f is a non-decreasing function. We can write the reward function r⇡t(µ) as

r⇡t(µ) =

min{K,
Pm

i=1 di}X

j=0

f(j)⇥ p
⇡t

0 ⇥ · · ·⇥ p
⇡t

j�1 ⇥ L({q⇡
t

0 , . . . , q
⇡t

j },K � j).

Here p
⇡t

j is element in P(⇡t
, ;), q⇡t

j := 1� p
⇡t

j , and K is the budget.

E.2 Proof framework

Notations. Let D =
Pm

i=1 di in this part. Let P(⇡g
, ;) = (p⇡

g

0 , . . . , p
⇡g

D) and P(⇡t
, ;) =

(p⇡
t

0 , . . . , p
⇡t

D). According to Corollary 1, we know that P(⇡g
, ;) can be obtained by sorting

[i2[m]{1, 1 � µi, 1 � 2µi, . . . , µi} [{0}. Here we define another list P̃(⇡g) which is obtained
by sorting [i2[m]{(i, 1), (i, 1�µi), . . . , (i, µi)} via comparing the second value in the pair. Let Ui,k

denote how many times pair (i, ·) appears in the first k positions in the list P̃(⇡g). The value Ui,k

satisfies that p⇡
g

k = maxmi=1 1 � Ui,kµi. Note that the definition of Ui,k are equivalent to the one
defined in the main text.
Theorem 5. Algo. 3 with adaptive exploration method has regret as follows.

Regµ(T)

0

@
mX

i=1

min{K,D}X

k=m+1

6�(k)
max

(�i,k
min)

2

1

A lnT +
bK

0

2 c⇡
2

3

mX

i=1

min{K,D}X

k=m+1

�(k)
max. (8)

Proof. When
¯
µt is close to µ, the list P(⇡t

, ;) is similar to the list P(⇡g
, ;), which indicates the

reward gap r⇡g (µ)� r⇡t(µ) is small. Let i,k(
¯
µt) be the indicator that takes value 1 when P(⇡g

, ;)
and P(⇡t

, ;) are the same for the first k elements, and different at the (k + 1)-th elements (i.e.,
p
⇡g

j = p
⇡t

j for 0 j k� 1 and p
⇡g

k 6= p
⇡t

k) with condition p
⇡t

k = 1�Ui,kµi. Note that the first m
elements in P(⇡t

, ;) and P(⇡g
, ;) equal to 1. Then the reward gap at round t is

�⇡t = r⇡g (µ)� r⇡t(µ) =
mX

i=1

min{K,D}X

k=m+1

i,k(
¯
µt) ·�i,k

max,

where �i,k
max is the maximum reward gap among all possible

¯
µt such that i,k(

¯
µt) = 1, i.e.,

�i,k
max = max

8
¯
µt, i,k(

¯
µt)=1

r⇡g (µ)� r⇡t(µ).

Note that

�i,k
max

min{K,D}X

j=k

f(j)⇥ p
⇡g

0 ⇥ · · ·⇥ p
⇡g

j�1 ⇥ L({1� p
⇡g

0 , · · · , 1� p
⇡g

j },K � j).

The expected cumulative regret can be expanded as

Regµ(T) = E�1,··· ,�T

"
TX

t=1

�⇡t

#

TX

t=1

E�1,··· ,�t�1

2

4
min{K,D}X

k=m+1

mX

i=1

i,k(
¯
µt)⇥�i,k

max

3

5

=
mX

i=1

MX

k=m+1

�i,k
minE�1,··· ,�t�1

"
TX

t=1

i,k(
¯
µt)

#
.

26

Our next step is bound E�1,··· ,�t�1

hPT
t=1 i,k(

¯
µt)

i
. We rewrite the indicator i,k(

¯
µt) as:

i,k(
¯
µt) = i,k(

¯
µt) {Ti,t�1 li,k}+ i,k(

¯
µt) {Ti,t�1 > li,k},

where li,k is a problem-specific constant. In Lemma 11, we show that the probability we choose
a wrong community when community i is probed enough times (i.e., Ti,t�1 > li,k) is very small.
Based on the lemma, the regret corresponding to the event {Ti,t�1 > li,k} is bounded as follows.

mX

i=1

min{K,D}X

k=m+1

�i,k
minE�1,··· ,�T

"
TX

t=1

i,k(
¯
µt) {Ti,t�1 > li,k}

#

j
K0

2

k
⇡
2

3

mX

i=1

min{K,D}X

k=m+1

�i,k
max.

On the other hand, the regret associated with the event {Ti,t�1 li,k} is trivially bounded byPm
i=1

PK
k=m+1 �

i,k
maxli,k. In conclusion, the expected cumulative regret is bound as

Regµ(T)
mX

i=1

KX

k=m+1

�i,k
maxE�1,··· ,�T

"
TX

t=1

k,t(
¯
µt)

#

mX

i=1

KX

k=m+1

�i,k
maxli,k +

bK
0

2 c⇡
2

3

mX

i=1

min{K,D}X

k=m+1

�i,k
max

mX

i=1

KX

k=m+1

6�i,k
max

(�i,k
min)

2

!
lnT +

bK
0

2 c⇡
2

3

mX

i=1

min{K,D}X

k=m+1

�i,k
max.

Note �(k)
max � maxi2[m] �

i,k
max. This completes the proof. ⌅

Lemma 11. For all k {M,
Pm

i=1 di}, we have

E�1,...,�T

"
TX

t=1

i,k(
¯
µt) {Ti,t�1 > li,k}

#

bK

0

2 c⇡
2

3
, (13)

where li,k is defined as li,k := 6 lnT/(�i,k
min)

2.

Proof. The following proof is similar to the that for the traditional Upper Confidence Bound (UCB)
algorithm [1]. In the following, we define i

⇤
k = maxi2[m] 1� Ui,kµi.

TX

t=1

i,k(
¯
µt) {Ti,t�1 > li,k} =

TX

t=li,k+1

i,k(
¯
µt) {Ti,t�1 > li,k}

TX

t=li,k+1

{(µ̂i,t�1 � ⇢i,t�1)Ui,k) < (µ̂i⇤k,t�1 � ⇢i⇤k,t�1)Ui⇤k,k
, Ti,t�1 > li,k}.

When Tik,t�1 > li,k , 6 lnT
(�i,k

min)
2

, we have

⇢i,t�1 =

s
3 ln t

2Ti,t�1
<

�i,k
min

2
) µi⇤k

Ui⇤k,k
< (µi � 2⇢i,t�1)Ui,k| {z }

i and i⇤k are distinguishable with high prob.

.

If i 6= i
⇤
k exists such that

µ̂i⇤k,t�1 � ⇢i⇤k,t�1 < µi⇤k
, and µ̂i,t�1 + ⇢i,t�1 > µi,

we have

(µ̂i⇤k,t�1 � ⇢i⇤k,t�1)Ui⇤k,k
< µi⇤k

Ui⇤k,k
< (µi � 2⇢i,t�1)Ui,k < (µ̂i,t�1 � ⇢i,t�1)Ui,k,

27

which contradicts with (µ̂i,t�1 � ⇢i,t�1)Ui,k < (µ̂i⇤k,t�1 � ⇢i⇤k,t�1)Ui⇤k,k
. Hence when Ti,t�1 > li,k,

we have
�
(µ̂i,t�1 � ⇢i,t�1)Ui,k < (µ̂i⇤k,t�1 � ⇢i⇤k,t�1)Ui⇤k,k

✓
�
µ̂i,t�1 + ⇢i,t�1 µi or µ̂i⇤k,t�1 � ⇢i⇤k,t�1 � µi⇤k

Using the union bound, we have

Pr
�
(µ̂i,t�1 � ⇢i,t�1)Ui,k < (µ̂i⇤k,t�1 � ⇢i⇤k,t�1)Ui⇤k,k

�

Pr
�
µ̂i,t�1 + ⇢i,t�1 µi or µ̂i⇤k,t�1 � ⇢i⇤k,t�1 � µi⇤k

�

Pr (µ̂i,t�1 + ⇢i,t�1 µi) + Pr
�
µ̂i⇤k,t�1 � ⇢i⇤k,t�1 � µi⇤k

�
.

Therefore, we can conclude that

E�1,...,�T

"
TX

t=1

i,k(
¯
µt) {Ti,t�1 > li,k}

#

XT

t=li,k+1
{(µ̂i,t�1 � ⇢i,t�1)Ui,k < (µ̂i⇤k,t�1 � ⇢i⇤k,t�1)Ui⇤k,k

, Ti,t�1 > li,k}.

XT

t=li,k+1
Pr {µ̂i,t�1 + ⇢i,t�1 µi}+ Pr

�
µ̂i⇤k,t�1 � ⇢i⇤k,t�1 � µi⇤k

TX

t=li,k+1

Xt

j
K0
2

k

Ti,t�1=li,k+1
Pr {µ̂i,t�1 + ⇢i,t�1 µi|Ti,t�1}

+
Xt

j
K0
2

k

Ti⇤
k
,t�1=1

Pr
�
µ̂i⇤k,t�1 � ⇢i⇤k,t�1 � µi⇤k

|Ti⇤k,t�1

�
!

1X

t=1

2t

�
K

0

2

⌫
⇥ t

�3 = 2

�
K

0

2

⌫ 1X

t=1

t
�2 =

j
K0

2

k
⇡
2

3
. ⌅

E.3 Full information feedback

If we feed the empirical mean in the exploration oracle, then the policy ⇡t is determined by µ̂t.
Similarly, we can define the event i,k(µ̂t) by replacing

¯
µt with µ̂ in Section E.1-E.2.

Lemma 12. If we make revisions defined in Eq. (7) to Algo. 3 and feed the empirical mean
in CommunityExplore to explore communities adaptively, then for all community Ci and k
{K,

Pm
i=1 di}, we have

E�1,...,�T

"
TX

t=2

i,k(µ̂t)

#
 2

"4i,k

, (14)

where "i,k is defined as (here i
⇤
k 2 argmini2[m] µiUi,k)

"i,k ,
µiUi,k � µi⇤k

Ui⇤k,k

Ui,k + Ui⇤k,k
for i 6= i

⇤
k and "i,k =1 for i = i

⇤
k.

Proof. We first bound the probability of the following event by relating i,k(µ̂t) with the event that
both µi,t�1 and µik,t�1 in the confidence interval "i,k.

i,k(µ̂t)
�
µ̂i,t�1Ui,k < µ̂i⇤k,t�1Ui⇤k,k

.

If i 6= i
⇤
k such that

µ̂i,t�1 > µi � "i,k, and µ̂i⇤k,t�1 < µi⇤k
+ "i,k,

then

µ̂i,t�1Ui,k > (µi � "i,k)Ui,k = (µi⇤k
+ "i,k)Ui⇤k,k

> µ̂i⇤k,t�1Ui⇤k,k
,

28

which contradicts with that µ̂i,t�1Ui,k < µ̂i⇤k,t�1Ui⇤k
. Here (µi � "i,k)Ui,k = (µi⇤k

+ "i⇤,k)Ui⇤k,k
can

be derived from the definition of "i,k. Therefore
�
µ̂i,t�1Ui,k < µ̂i⇤k,t�1Ui⇤k,k

�
µ̂i,t�1 µi � "i,k or µ̂i⇤k,t�1 � µi⇤k

+ "i,k

.

With above equation and the concentration bound in [9], the expectation E�1,...,�T

hPT
t=2 i,k(µ̂t)

i

can be bounded as

E�1,...,�T

"
TX

t=2

i,k(µ̂t)

#

TX

t=2

Pr
�
µ̂i,t�1Ui,k < µ̂i⇤k,t�1Ui⇤k,k

TX

t=2

Pr {µ̂i,t�1 µi � "i,k}+ Pr
�
µ̂i⇤k,t�1 � µi⇤k

+ "i,k

TX

t=2

0

@
tbK0/2cX

Ti,t�1=t�1

e
�"2i,kTi,t�1 +

tbK0/2cX

Ti⇤
k
,t�1=t�1

e
�"2i,kTi⇤

k
,t�1

1

A

 2
TX

t=1

1X

s=t

e
�s"2i,k 2

TX

t=1

e
�t"2i,k

"2i,k

 2

"4i,k

. ⌅

F Experimental Evaluation

In this section, we conduct simulations to validate the theoretical results claimed in the main text and
provide some insight for future research.

F.1 Offline Problems

In this part, we show some simulation results for the offline problems.

Performance of Algorithm 1. In Fig. 3, we show that the allocation lower bound k� and upper
bound k+ are close to the optimal budget allocation. From Fig. 3, we observe that the L1 distance
between k⇤ and k� (or k+) is around m/2, which means the average time complexity of Algorithm 1
is ⇥((m logm)/2).

Reward v.s. Budget. We show the relationship between the reward (i.e., the number of distinct
members) and the given budget in Fig. 4. From Fig. 4, we can draw the following conclusions.

• The performance of the four methods are ranked as: ’“Adaptive Opt.”, “Non-adaptive Opt.”,
“Proportional to Size”, “Random Allocation”. This validate our optimality results in Sec. 3.

• The method “Proportional to Size” and “Non-adaptive Opt.” have similar performance. It is
an intuitive idea to allocate budgets proportional to the community sizes. The simulation
results also demonstrate the efficiency of such budget allocation method. In the following,
we analyze the reason theoretically. Recall the definition of k� as follows.

k
�
i =

(K �m)/ ln(1� µi)Pm
j=1 1/ ln(1� µj)

.

When µi ⌧ 1, we have ln(1� µi) ⇡ �µi. Hence,

k
�
i ⇡

(K �m)diPm
j=1 dj

.

Besides, the L1 distance between k⇤ and k� is smaller than m. We can conclude that the
budget allocation proportional to size is close to the optimal budget allocation. Fig. 6 also
validates this conclusion.

29

200 400 600 800

200

400

m

kk
⇤
�

k
�
k 1

200 400 600 800

200

400

m

kk
⇤
�
k
+
k 1

U{2, 26} G(0.1) �(6, 2)

Figure 3: The L1 distance between k⇤ and k�, k+ under different community size distributions. Here
U{2, 26} is the discrete uniform distribution between 2 and 26. G(0.1) is the geometric distribution
with success probability 0.1 on the support set {2, 3, . . . }. �(↵,�) is the gamma distribution with
shape ↵ and rate �. We discretize the support set of the gamma distribution and add 2 to all the values
in the support set to ensure that the minimum size of communities is 2. The budget K is a random
number between m+ 1 and

P
i di. We run the simulations for 1000 times for each data point.

• The reward gap between “Non-adaptive Opt.” and “Adaptive Opt.” increases first and then
decreases, as shown in Fig. 5.

Budget Allocation Comparison. Fig. 6 and Fig 5 show the budget allocation of non-adaptive
optimal method and adaptive optimal method. Fig. 5 shows that the adaptive optimal method use the
budget more efficiently.

F.2 Online Problems

In the following, we show the simulation results for the online, non-adaptive problem. The simulation
results for online, adaptive are similar. Hence, we only present the results for online, non-adaptive
problems. Fig. 7 shows the regret of three different learning methods. For illustration purpose, we set
the community sizes as
bmd = (2, 3, 5, 6, 8, 10). From Fig. 7, we can draw the following conclusions.

• If we feed the empirical mean into the oracle, the regret grows linearly.
• The regret of CLCB algorithm is bounded logarithmically, as proved in Thm. 3.
• The regret under full information feedback setting is bounded as a problem related constant,

as proved in Thm. 4.

30

0 10 20

0

5

10

15

Sizes

F
r
e
q
u
e
n
c
y

U{2, 26}

0 20 40 60

0

10

20

Sizes
F
r
e
q
u
e
n
c
y

G(0.1)

0 10 20 30

0

5

10

15

Sizes

F
r
e
q
u
e
n
c
y

�(6, 2)

(a) Community size distributions
Random Allocation Proportional to Size Non-adaptive Opt. Adaptive Opt.

2,000 4,000 6,000

400

600

800

1,000

1,200

Budget K

R
e
w

a
r
d

2,000 4,000 6,000

400

600

800

1,000

Budget K

R
e
w

a
r
d

2,000 4,000 6,000
400

600

800

1,000

1,200

1,400

Budget K

R
e
w

a
r
d

(b) Reward of different methods

Figure 4: Reward v.s. Budget. In the first row, we show three different size distributions of m = 100
communities. In the second row, we show the reward of four different budget allocation methods.
Here “Random Allocation” represents random budget allocation (sum up to K). “Proportional to Size”
method allocates budget proportional to the community sizes. “Non-adaptive Opt.” corresponds to
the optimal budget allocation obtained by the greedy method. “Adaptive Opt.” means we explore the
communities with greedy adaptive policy ⇡g. The simulations are run for 200 times for each data
point on the budget-reward curve.

0 1,000 2,000 3,000 4,000 5,000 6,000

0

1,000

2,000

3,000

Budget K

A
c
t
u
a
ll
y

U
s
e
d

B
u
d
g
e
t
K

0 Truncated ⇡
g

Truncated k⇤

3,200 3,600

3,000

3,200

3,400

3,600

0 2,000 4,000 6,000
0

200

400

600

800

1,000

1,200

Budget K

#
D

is
t
in

c
t

M
e
m

b
e
r
s

⇡
g

k⇤

0 2,000 4,000 6,000

0

10

20

30

40

Budget K

R
e
w

a
r
d

G
a
p

Figure 5: Actually used budget. we only show the results for the community size configuration
generated by G(0.1), as shown in the first row of Fig. 4. The legend labels have the same meaning as
in Fig. 6

31

0 20 40 60

0

10

20

30

Sizes di

B
u
d
g
e
t
k
i

K = 500

k⇤

Truncated ⇡
g

Truncated k⇤

0 20 40 60

0

50

100

150

Sizes di

B
u
d
g
e
t
k
i

K = 2500

k⇤

Truncated ⇡
g

Truncated k⇤

0 20 40 60

0

100

200

300

Sizes di

B
u
d
g
e
t
k
i

K = 6000

k⇤

Truncated ⇡
g

Truncated k⇤

Figure 6: Comparison of different budget allocation methods. The distribution of community sizes
generated by the geometric distribution with success probability 0.1, as shown in the first row of
Fig. 4. The legend label “k⇤” represents the optimal budget allocation. The “truncated ⇡g” means we
stop the greedy adaptive process if all the members are found. The “truncated k⇤” means we stop the
non-adaptive exploration of community Ci if all the members of Ci are found. Each data point is an
average of 1000 simulations.

32

CLCB Empirical mean Full information feedback

0 2,000 4,000

0

500

1,000

Round T

R
e
g
r
e
t

0 2,000 4,000

0

2

4

6

Round T

P
i2

[m
]
|µ

i
�
µ̂
i|
/
µ
i

(a) K = 20,k⇤ = (1, 2, 3, 3, 5, 6)

0 2,000 4,000

0

200

400

600

800

Round T

R
e
g
r
e
t

0 2,000 4,000

0

2

4

Round T

P
i2

[m
]
|µ

i
�
µ̂
i|
/
µ
i

(b) K = 30,k⇤ = (2, 3, 4, 5, 7, 9)

0 2,000 4,000

0

200

400

Round T

R
e
g
r
e
t

0 2,000 4,000

0

2

4

Round T

P
i2

[m
]
|µ

i
�
µ̂
i|
/
µ
i

(c) K = 50,k⇤ = (3, 4, 7, 9, 12, 15)

Figure 7: Comparison of different learning algorithms. The sizes of communities are d =
(2, 3, 5, 6, 8, 10). Here the label Empirical mean represents feeding the empirical mean into the
oracle directly. The regret/error line plots are average of 100 simulations.

33

